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Chaos is the score upon which reality is written.
— Henry Miller

. it may happen that small differences in the initial conditions
produce very great ones in the final phenomena.
— Henri Poincaré

Prediction is difficult, especially of the future.
— Mark Twain (also attributed to Niels Bohr)

EN THE PREVIOUS book part we saw how natural physical structures could be
described in terms of fractal geometry. In this book part we will be concerned with
the related topic of chaos in nonlinear dynamical systems. A dynamical system
can be loosely defined as anything that has motion, such as swinging pendulums,
bouncing balls, robot arms, reactions in a chemical process, water flowing in a
stream, or an airplane in flight. For each of these examples there are two important
aspects that must be considered. First, we need to determine what it is about
a dynamical system that changes over time. In the case of the pendulum, both
position and velocity vary over time, so we would be concerned with the “motion”
of both of these states of the pendulum. A less obvious example is found in a
chemical reaction, where the “motion” can be found in the ratio of reactants to
reagents, or perhaps in some physical aspect of the chemicals, such as temperature
or viscosity. The second aspect of a dynamical system that we must be concerned
with is in the collection of rules that determine how a dynamical system changes
over time. Usually, scientists have a mathematical model of how a real dynamical
system works. The model will typically have equations that may be parameterized
by time and the previous states of the system. Sometimes these equations can be
used to get an estimate of what the future state of a dynamical system will be. In
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Figure 10.1 Different types of motion: (a) fixed point, (b) limit cycle (¢) quasiperiodic

this spirit, let’s agree that the “motion” of a dynamical system is dependent, on how
the state of the system changes over time. Moreover, there must exist a set of rules
that governs how a dynamical system in some state evolves to another state. We
may not know what the rules are, but if a dynamical system is deterministic, a set
of rules for the time evolution of the system exists independently of our knowledge
of it.

There are many different types of motion that can be exhibited by a dynamical
system. The simplest is fized point behavior, which can be seen in a pendulum when
friction and gravity bring the system to a halt. Most fixed points can be likened to
a ball placed on top of a hill, which rolls downward until at some point the ball sits
on a flat spot and has no momentum to carry it further.

The next simplest type of motion is known as a limit cycle or periodic motion,
which involves movement that repeats itself over and over. A lone planet orbiting

- a star in an elliptical orbit is an example of a limit cycle. Some limit cycles are

more complicated than others. For example, a child on a swing drives the motion of
the swing by periodically rocking in beat with the natural frequency of the swing,
much like an idealized pendulum. Now, if the child rhythmically swings one leg at
a higher frequency, the motion of that leg will cause the motion of his or her body
to subtly wobble back and forth. If it is timed accurately, the child may be able to
coerce the motion into behavior that is more complicated than that of the planet,
with his or her body moving back and forth along the main axis of the swing, and
perpendicularly left to right in step with the leg.

A slightly more complicated form of motion is found in quasiperiodic systems,
which are similar to periodic systems except that they never quite repeat themselves.
For example, the moon orbits Earth, which orbits the sun, which, in twrn, orbits
the galactic center, and so on. In order for the combined motion of the moon and
Earth to be truly periodic, they must at some future point return to some previously
occupied state. But in order for that to happen, all of the individual motions must
resonate, which means that there must exist a length of time that will evenly divide
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all of the frequencies. Figure 10.1c shows quasiperiodic motion as consisting of two
independent circular motions that fail to repeat due to a lack of resonance.

Up until the last thirty years or so, almost every scientist believed that everything
in the universe fell into either fixed point, periodic, or quasiperiodic behavior. The
belief in a clockwork universe, as exemplified by the mathematician Pierre-Simon
de Laplace®, held that, in principle, if one had an accurate measure of the state of
the universe and knew all of the laws that govern the motion of everything, then one
would be able to predict the future with near perfect accuracy. We now know that
this is not true, since science was mistaken in its assumption that everything is either
a fixed point or a limit cycle. Chaotic systems are not just exceptions to the norm
but are, in fact, more prevalent than anyone could imagine. Chaos is everywhere: in
the turbulence of water and air, in the wobble of planets as they follow complicated
orbits, in global weather patterns, in the human brain’s electrochemical activity,
and even in the motion of a child on a swing. In all of these cases the complicated
motion produced by chaos prohibits predicting the future in the long term. On the
other-hand, phenomena that were once thought to be purely random are now known
to be chaotic. The good news in this case is that chaotic systems admit prediction
in the short term. '

'Chaos is related to the other topics of this book in many ways. The pathological
nature of the incomputable functions from Part I is very similar to the unpredictabil-
ity of chaotic systems. The motion of chaotic systems can be described by fractal
geometry. There is also a hypothesis known as “computation on the edge of chaos”
that will be relevant in the next book part when we study complex systems.

In this chapter we will be primarily concerned with getting an intuitive feel for
how chaos works in a simple, discrete time, iterative system. The nice thing about
the examples that we will be looking at is that the richness, diversity, and beauty
of chaos are exhibited by a deceptively simple dynamical system.

10.1  The Logistic Map

The logistic map (also known as the “quadratic map” or the “Feigenbaum map”)
is a simple population growth model that is defined by the iterative equation® .

@pey = drag(l — xy),

where r is a parameter that can be set to reflect the reproduction rate of the
population. The legal values of z; (as well as w1, ) range between 0 and 1 inclusively.

Laplace claimed that “given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective positions of the beings which compose it

. nothing would be uncertain, and the future as the past would be present to its eyes.”

2In many scientific writings the logistic map is given as z¢41 = rz¢(l — z¢), with r ranging
from O to 4. I have deliberately added the 4 in my presentation so that + can range from 0 to 1.
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If z; equals 0, then we can interpret the population as being extinct. If z; equals 1,
then the system is overpopulated (with imminent extinction at the next time step).
All other values between 0 and 1 represent intermediate population levels.

The value of r is also allowed to vary between 0 and 1. If 7 is 0, then nothing
reproduces in the population. If r is equal to 1, then the members of the population
are reproducing at the maximum rate. Over the course of this section, we will look
at several different values of r. Since the logistic map is so simple, you may wish
to use a calculator while reading this chapter, so as to simulate population growth
yourself. -

To use the logistic map, we must choose a constant value for 7 and an initial
population, zg. From zg we can compute x1, then 23, and so on. Intuitively, we can
assign a useful interpretation to the individual terms of the dynamical system. We
can think of 4rz; as being positive feedback in the sense that as z; grows in size,
so does the value of 47z, which is akin to saying that a population size is partially
determined by the product of the previous size and the rate at which members
reproduce. The (1 — @) portion of the equation can be thought of as negative
feedback, since increasing x; w111 decrease (1 — x); thus, (1 — x¢) can be thought of
as population decline due to ovelpopulatlon and scarce resources.

What we would like to know is, for some value of r, what happens to the long-
term behavior of the system as ¢ goes to infinity. Let’s consider some special cases.
Suppose that 7 is less than or equal to 1 3. In this case the time evolution is descr ibed
by awy(1—z¢), with a, @y, and (1 —=;) all between 0 and 1. Since the population at
the next time step is the product of three numbers between 0 and 1, the population
at the next time step must always be smaller than what it is at the current time step.
Thus, no matter what initial value we choose for xy, if r < -14, then the population
is doomed to extinction.

Suppose that r is greater than % but less than % In this case the long-term
behavior of the logistic map is to fall into a fixed point. Figure 10.2 illustrates
this gr aphmally The graph on the left shows the values of z; plotted over time for
100 steps. The graph on the right shows the state space of the dynamical system
(also referred to as the phase space) that plots @y versus @41 to illustrate how the
next iterate depends on the cunent value. The parabola in the graph is a plot of
2ip1 = dray (1 — o) with r = 10 At any time step, we can geometrically determine
the value of the next iterate by taking the current value of z;, drawing a line at that
value from the identity line to where it intersects the parabola, and then making a
90 degree turn toward the identity line again. In this way, the time evolution of the
logistic map can be seen to be attracted to the fixed point. Moreover, it doesn’t
matter what initial value we pick for zq, since any choice between 0 and 1 will cause
the system to converge into the same fixed pomt

If we set r greater than 7 but less than 3 %, then the value of the attracting fixed
point will increase as we make r larger. Intultlvely, this makes sense since one would
expect a stable population to increase in size if the reproduction rate increases. All
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Figure 10.2 Logistic map with r = ;%: (a) The time series quickly stabilizes to a fixed
point. (b) The state space of the same system shows how subsequent steps of the system
get pulled into the fixed point.

fixed points, regardless of the value of r, can be found by seeing where the state
space plot of x4 versus @441 intersects the identity line. With % <7r < % the parabola
will always intersect the identity line at two points: the stable fized point, which
attracts all nonzero points, and 0 which is an unstable fized point. The first fixed
point is stable because if you randomly perturb the system away from the fixed
point, the system will quickly converge back to the attracting fixed point again.
Zero is an unstable fixed point because any perturbation will cause the system to
leave that infinitesimal region forever. If you like, you can think of a stable fixed
point as being similar to a ball at the bottom of a crater, valley, or depression. If
you softly kick the ball, it will move just a bit, then stop. If your depression is
shaped like a perfect bowl, then the ball will come to rest at the same location
it started from. An unstable fixed point is like a ball perfectly balanced on the
peak of a mountain. The slightest nudge will cause the ball to move away from
the fixed point, never to return. We can squeeze one more useful notion out of
this metaphor. Considering the stable fixed point once again, notice that there is
an area defined by the perimeter of the depression. If you drop the ball anywhere
within the perimeter, the ball will fall to the bottom of the depression. If the ball
is dropped outside of the perimeter, the ball will go elsewhere. This area within
the perimeter is sometimes referred to as the basin of attraction. An unstable fixed
point has a basin of attraction that has 0 volume and area.
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Figure 10.3 A single bifurcation

Something 1ntelest1ng happens when r is set just above 2 7 F01 example, when
r is equal to iﬁ’ as long as the choice for zg is neither 0 1101 —52—, the system will
never converge to any fixed point. Instead, the population will settle into a period-
2 limit cycle, which means that it will oscillate between two values. Zero will still
be an unstable fixed point, but the fixed point near @ will now also be unstable.
Figure 10.3 illustrates what’s happening much better.

The leftmost portion of the drawing illustrates how the location of the fixed
point gradually increases as we increase the value of 7; however, at a critical value,
the path will split in two. The two solid lines on the right illustrate how the location
of the period-2 limit cycle changes as the value of r is increased. The dashed line
shows how the once stable fixed point continues to exist, but in a form that is
unstable. Thus, solid lines denote stable paths, and dashed lines denote unstable
paths. Figure 10.4 illustrates the period-2 limit cycle in a form that is similar to
Figure 10.2. Notice that the state space diagram now clearly shows how the state
of the system oscillates between two values.

10.2  Stability and Instability

For one-dimensional maps like the logistic map, there is a very simple method to
determine if a fixed point or limit cycle is stable or unstable. The idea behind the
technique is to examine the local behavior of the map in the vicinity of a fixed point
or limit cycle. For notational purposes, let’s refer to the mapping function as f(z),
that is, f(z) = 4rz(1 — o) for the logistic map. The first derivative of f(z), which
is equal to f/(z) = 4r(1 — 2z), tells us how steeply sloped the function is in the
vicinity of . Now, suppose there exists a fixed point, which we will call 2, and
that we would like to know whether the fixed point is stable or unstable. If we
look at the derivative of f(x) evaluated at zp, then the following possibilities may
characterize the behavior of f(z) at zp:

|f'(zr)] < 1 attracting and stable -
fl(zgp) = 0 super-stable

|f'(zF)] > 1 repelling and unstablé
|f'(xr)] = 1 neutral
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Figure 10.4 Logistic map with r» = I86: (a) The time series quickly stabilizes to a period-

2 limit cycle. (b) The state space of the same system shows how subsequent steps of the
system get pulled into the limit cycle. (c) The state space of the same system but with
only the converged values for z; plotted, so as to clearly show the limit cycle’s location.
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Figure 10.5 Logistic map with r = %80: (a) The time series quickly stabilizes to a '"

period-4 limit cycle. (b) The state space of the same system. (¢) The state space of the
same system but with only the converged values for «; plotted.
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Figure 10.6 Logistic map with » = 1: (a) The time series is chaotic and has the appear-
ance of noise. (b) The state space of the same system, which illustrates how the system’s
trajectory visits every local region. (c) The state space of the same system with only four

steps plotted, so as to show how small differences turn into larger differences.
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As a specific case, consider r = 2 and zp = %, which would give us |f/(zp)| =
13(1 — %)] = 1, which further means that the system is neutral at that zy for the
given value of r. Let’s see what happens when we change 7 by just a very small
amount. First, let’s make r a little bit smaller: r = % — €, where € represents a
very small positive number. The new location of the fixed point can be found by
solving for zp in the equation zp = 4rxp(l — xp). If we take this new value and
plug it into |f/(zp)|, we find that the result will be just Iess than 1, which means
that the fixed point is now stable. Similarly, if we set r to 3 4 +¢, the new fixed point
can be computed and plugged into |f/(zp)|. The resulting value (if a suitably small
enough e is used) will be just larger than 1, which further implies that the fixed
point is now unstable.

The analysis for the stability of a limit cycle is nearly identical except for the
fact that a limit cycle will oscillate between, say, m points in an orbit: 2, xp,,

-+, o, . Taking the absolute value of the product of f/(z) evaluated at each of
these points gives us

m

Hf/(a;Fi)

i=1

= lf/((BFl) X f,(:sz) Xoere X f’(mFm)"

which has the same stability properties listed above for fixed points.

10.3 Bifurcations and Universality

Recall that the junction point where the system moves from a fixed point to a period-
2 limit cycle occurs at exactly % This period doubling is known as a bifurcation.
Let’s see what happens as we increase r further. When r is set to just larger than
(14 v/6) = 4, the logistic map will bifurcate a second time, giving a period-4 limit
cycle. Figure 10.5 shows the period-4 cycle in time-series and state-space forms.

If we increase r even more, we will eventually force the system into a period-8
limit cycle, then a period-16 cycle, and so on. The amount that we have to increase
r to get another period doubling gets smaller and smaller for each new bifurcation.
This cascade of period doublings is reminiscent of the race between Achilles and
the tortoise, in that an infinite number of bifurcations (or time steps in the race)
can be confined to a local region of finite size. At a very special critical value,
the dynamical system will fall into what is essentially an infinite-period limit cycle.
This is chaos. Figure 10.6 shows the time series and state space of the logistic map
for r = 1, which is in the chaotic regime.

Figure 10.7 illustrates the transition from order to chaos with two bifurcation
diagrams. The z-axis represents a value for 7, and the y-axis shows the period of
the limit cycle. Notice that the diagram cleally shows how each period doubling
spans a shorter amount of space than the previous doubling. Eventually the period
doublings converge to what looks like an infinite-period attractor. Notice also that
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Figure 10.7 Bifurcation diagrams for the logistic map: (a) This image has values of r
such that fixed points, limit cycles, and chaos arve all visible. (b) This image shows the
detail of the boxed section of (a).

the two images are very self-similar in that we could enlarge a portion of Figure 10.7b
to get another self-similar section, and so on.

Bifurcations of this sort are seen in many different types of phenomena. What
is truly astonishing is that for a very broad class of bump-like functions, such as
the logistic map, the cascade of bifurcations behaves in accordance with a universal
number known as the Feigenbaum constant. For notational convenience let’s refer
to the value of r at which the logistic map bifurcates into a period-2™ limit cycle
as an, that is, a3 = 3— Thus, we would know that for a;_; < r < aj the logistic
map would have a stable period-2* limit cycle. Mitchell Feigenbaum considered the
properties of the series of numbers generated by

e ap — a‘k—l,
Qp41 — G
for k > 2. In the equation above, the numerator and denominator represent the
distance between successive bifurcation points, as is shown in Figure 10.8. There-
fore, the whole expression, being the ratio of the two distances, quantifies how
fast the next bifurcation occurs relative to the previous one. Feigenbaum showed
that doo = 4.669202- -+, not just for the logistic map but for all one-dimensional
maps that have a single hump. Thus, every chaotic system that falls into this class
bifurcates at the same rate.
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Figure 10.8 Detail of a bifurcation diagram to show the source of the Feigenbaum
constant

By itself, this is an amazing result, yet it turns out that there is a very practical
application for this knowledge. Suppose you are interested in a chaotic process that
has a single tunable parameter like r for the logistic map. By empirically noting
where the first few bifurcations occur, it is possible to get an accurate estimate for
Geo, Which is the point where the system becomes chaotic. Thus, it is pos&uble to
estimate when a system will become chaotic before it ever happens.

10.4  Prediction, Layered Pastry, and Information Loss

One of the most important differences between chaotic processes and truly stochastic
processes is that the future behavior of a chaotic system can be predicted in the short
term, while stochastic processes can be characterized only statistically. For example,
in a fair coin toss, knowing the results from earlier coin tosses does absolutely
nothing for you if you are trying to predict what the next coin toss will yield.
The best you could do, in terms of being able to predict the future, would be to
generalize over an entire history, for instance, we could safely say that about half of
our future coin tosses will result in heads; however, we are powerless to make any
accurate assertions about any particular random event, such as the very next coin
toss. Chaotic processes, on the other hand, can be predicted, since chaos always has

. hidden order within it. For many chaotic processes, the order becomes apparent

when one looks at state space plots, as was done earlier. In contrast to chaos,
plotting z; against x;y; for a stochastic process will reveal no hidden structure
whatsoever.
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(b) () (d)
Figure 10.9 &11Cti011a1 mappings with 7 = 1: (a) (), (b) f2(z), (c) f3(z), (d) f*(x)

The flipside of this is that long-term prediction of a chaotic process becomes
more difficult the farther into the future we try to predict. To predict one time
step into the future, we would need to have an idea of what f(z) looked like. If
we wanted to predict two time steps into the future, we would have to examine
J(z) recursively applied to itself as f(f(z)). For the general case, let’s agree that
J™(z) denotes the mapping function of f(z) recursively applied to itself a total of
m times. Figure 10.9 illustrates how the mapping functions become more and more
complicated as we increase the number of time steps into the future that we are
looking at.

The pathological nature of chaos can be better appreciated with an analogy.
Suppose you are a pastry chef who wants to make a pastry crust that has many
layers in it. One way to accomplish this would be to stretch out your dough, fold
one half over the other, and then repeat as often as needed. Notice that each step
doubles the number of layers. It turns out that the motion of a chaotic system is
very similar to the way we would form the pastry crust. For the logistic map, the
4rz portion of the function “stretches” out the input surface, while the —4rz? term
“cuts” and “folds” the input. In this way, two grains of sugar that were originally
close to one another in the pastry dough would gradually move away from one
another, becoming decorrelated from one another as time went on. The sensitivity
of chaotic systems is a result of these mixing actions.

Looking again at Figure 10.9, we can see that f™(x) has 2™~ “humps” in it,
which is similar to the way our pastry has an exponential number of layers. We will
now see how all of this relates to a firm theoretical limitation on how far into the
future one can predict. To make the analysis a bit simpler, let’s assume that you
only need to distinguish z; values that are greater than or equal to % from those
that are less than % In other words, if you are predicting m time steps into the
future and I supply you with a value for x4, your prediction scheme should return
1 bit of information: either “Yes, x4y, < %” or “No, Tpym > %.”

To represent the starting value of z;, we must ultimately encode the information
in binary form. First, consider the case of m = 1. To determine if z;; is greater
than (or less than) %, we essentially need to partition the input space into at least
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(el E e ) (L= E == )
0 | 0.987654321 | 0.987654320 | 0.000000001 14 | 0.755999804 | 0.755936076 | 0.000063729 |

1] 0.048773053 | 0.048773057 | 0.000000004 15 |.0.737856401 | 0.737986901 | 0.000130500

2 | 0.185576969 | 0.185576983 | 0.000000014 16 | 0.773697331 | 0.773448940 | 0.000248390

3 | 0.604552629 | 0.604552665 | 0.000000035 17 | 0.700359085 | 0.700902708 | 0.000543623

4 | 0.956274991 | 0.956274961 | 0.000000030 18 | 0.839424949 | 0.838552408 | 0.000872541

5 | 0.167252531 | 0.167252639 | 0.000000108 19 | 0.539162817 | 0.541529069 | 0.002366252

6 | 0.557116488 | 0.557116776 | 0.000000288 20 | 0.993865095 | 0.993101346 | 0.000763749

7 1 0.986950827 | 0.986950696 | 0.000000132 21 | 0.024389072 | 0.027404252 | 0.003015180

8 | 0.051515568 | 0.051516080 | 0.000000512 22 | 0.095176980 | 0.106613035 | 0.011436055

9 | 0.195446856 | 0.195448694 | 0.000001839 23 | 0.344473289 | 0.380986782 | 0.036513494

10 | 0.628989529 | 0.628994009 | 0.000004480 24 | 0.903245768 | 0.943343416 | 0.040097648

11 | 0.933446806 | 0.933442183 | 0.000004623 25 | 0.349571401 | 0.213786462 | 0.135784940

12 | 0.248495467 | 0.248511497 | 0.000016030 26 | 0.909484947 | 0.672327242 | 0.237157705

13 | 0.746981880 | 0.747014131 | 0.000032252 27 | 0.329288313 | 0.881213286 | 0.551924973

Table 10.1 Exponentially divergence: With two slightly different starting positions, two
chaotic trajectories will exponentially diverge from one another.

three sections: the middle section, where the hump is greater than %, and the left
and right extremes, where the function descends below % For arbitrary values of
m, we need to partition the input space into 2™ -+ 1 sections. Consequently, we need
at least m -+ 1 bits of accuracy to encode the initial value for z;. If our floating-
point representation for numbers uses any number of bits less than m + 1, then the
accuracy of the predictions can be no better than a random guess. The situation
is such that in a very real way, we lose 1 bit of information for each time step into

the future that we try to predict. ;

To put all of this in perspective, the most advanced computers today use 128 bits
for floating-point numbers. So even though the logistic map is an extremely simple
system, modern computers can make only marginally accurate predictions for less
than 128 time steps into the future. You may be thinking that a clever programmer
could work around this by using more bits for the floating-point numbers. However,
since a computer’s memory is finite in size, there will always be a value m for which
all computers are helpless to predict what x4y, looks like.

The problem gets even worse when we consider two other factors. First, for all of
this section we have been assuming that our initial measurement of z; was accurate.
In the real world there is always some sort of measurement error. Any error, even
something unbelievably infinitesimal, will grow at an exponential rate, breaking
any prediction scheme we can think of. The second factor relates to some of the
discussion from Chapter 2. More specifically, what happens when the state falls on
an irrational number? Since there are infinitely many more irrational than rational
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numbers, any encoding scheme that attempts to represent all numbers by rational
numbers must have—by definition—at least some error in the storage technique.

We will now demonstrate all of this with an experiment that you can perform on
a simple calculator. We are going to compute two chaotic trajectories of the logistic
map for 7 = 1. One trajectory, which we will label ¢, will have an initial value of
x@ = 0.987654321. The second trajectory will be labeled 2, and use an initial value
of x§ = 0.987654320. Therefore, the two starting positions differ only by about 1
part in a billion, which would be regarded as an amazingly accurate measurement
in the real world.

To represent a decimal number requires about three bits of information per
decimal place. Since our numbers have nine digits, there is a total of approximately
twenty-seven bits of information per number. Therefore, let’s see what happens to
the two trajectories after twenty-seven time steps. For the first few steps the error
seems quite tolerable. In fact, the two trajectories are very similar for about the
first twenty steps. It is not until the very last step that z¢ and 2? fall on different
sides of the % divider; however, from this point on, the two trajectories will have
no correlation with each other at all, since, as can be seen in Table 10.1, the error
roughly doubles in size for each additional time step.

10.5 The Shadowing Lemma

There are a few troubling facts about the results from the last section. As touched on
briefly before, since computers can represent only digital quantities and approximate
real numbers with finite precision, any computer simulation of a chaotic system is
doomed to degrade increasingly the farther into the future one tries to predict.
Another facet of this problem involves the fact that if we simulate a chaotic system
in a computer, at some point in the future the simulated system must start to repeat
itself because of the finite precision available. In other words, computers cannot
really generate aperiodic trajectories, but only limit cycles with, admittedly, very
long periods.

How, then, do we know if computer simulations of chaos are valid in the sense
that they yield true characterizations of real chaos? Worse still, is it possible that
“chaos” is nothing more than a computer artifact that results from trying to repre-
sent a stochastic world with digital numbers? The shadowing lemma is a remarkable
result that has an answer to these questions, at least for certain types of chaotic
systems.

Figure 10.10 contains two graphs that illustrate the shadowing lemma in action.
The graph on the left shows an exact trajectory (from a chaotic system) plotted
alongside a simulated one. For the reasons outlined earlier, the two trajectories
inevitably drift apart.

The graph on the right of Figure 10.10 shows the same computed trajectory as
in the first graph, but this time a shadow trajectory is plotted alongside it. For



154

Nonlinear Dynamics in Simple Maps

Computed Trajectory ————— Computed Trajectory

— — — — Exact Trajectory . — — — — Exact Shadow Trajectory

Figure 10.10 Shadow trajectories: On the left, the computed trajectory deviates from
the exact (real) trajectory because of accumulated errors. On the right is a shadow of the
computed trajectory that is arbitrarily close to the computed trajectory.

any computed trajectory, the shadowing lemma posits the existence of a shadow
trajectory that follows arbitrarily close to the computed trajectory. In other words,
the shadowing lemma tells us that a computer simulation of chaos does, in fact,
provide an accurate picture of the motion in a chaotic system.

As an example of what the shadowing lemma means, consider the problem of
weather forecasting. We know that all weather forecasts are doomed to be inac-
curate in the long term. However, if we look at a weather simulation as it evolves
over time, it is quite possible that the simulation captures all of the richness and
complexity of the real weather system as it could happen.

10.6 Characteristics of Chaos

i

In this section we will summarize the characteristics of chaos that are common to
all chaotic systems. Most of the issues that we will discuss in this section simply
summarize material from the earlier portions of the chapter. The other topics that
we will discuss will serve as motivation for the latter chapters in this part.

The goal of this section is to provide a working definition of chaos. This task
is somewhat difficult in that many scientists do not agree on a single definition
of chaos. Nevertheless, the characteristics listed in this section should go a long
way toward showing you what chaos looks like. Also, keep in mind that these
characteristics are necessary but not sufficient, that is, all chaotic systems will have
all of these characteristics, but just because a dynamical system possesses one of
these attributes does not make it chaotic.
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Deterministic Chaotic systems are completely deterministic and not random.
Given a previous history of a chaotic system, the future of the system will be
completely determined; however, this does not mean that we can compute what the
future looks like.

Related to this distinction between chaotic and random processes are the topo-
logical properties of their respective state spaces. The motion of a random process
is, by definition, uncorrelated with the previous states of the system. As such, if
you looked at the state space of a random process, you would see only a “blob-like”
structure with no order whatsoever. Complementary to this, for all chaotic systems
there is always a way of showing structure in the system’s state space. We may
need to look at a higher-dimensional state space in order to see this structure, but
the structure is there, nevertheless.

Sensitive Chaotic systems are extremely sensitive to initial conditions, since any
perturbation, no matter how minute, will forever alter the future of a chaotic system.
This fact has sometimes been referred to as the “butterfly effect,” which comes from
Edward Lorenz’s story of how a butterfly flapping its wings can alter global weather
patterns. In his book Chance and Chaos, David Ruelle gives an even better example

- of sensitivity to initial conditions, which I will paraphrase here. Suppose that by

some miracle the attractive effect of a single electron located at the limit of the
known universe could be suspended momentarily. How long do you think it would
take for this slight perturbation to change the future on a macroscopic scale? Since
the motion of air causes individual molecules to collide with one another, it would
be interesting to know how long it would take for these collisions to be altered.
Amazingly, after only about fifty collisions the molecules in Earth’s atmosphere
will have collided in a different manner than they would have originally. If we wait
another minute or two, the motion in a turbulent portion of the atmosphere will
be altered at the macroscopic level. And, if we wait another week or month, the

- motion of the entire weather system will be measurably altered.

Thus, the next time you hear your local weather forecaster tell you what next
week’s weather will look like, you can recognize it for the nonsense it is. But this
is not to say that all prediction is hopeless, since chaotic systems can be predicted
over the short-term with a fair amount of accuracy. Another facet of the sensitivity
of chaotic systems is that in many ways chaotic systems are more susceptible to
control. You can look at it this way: Since any perturbation causes an exponential
divergence in the state space trajectory of a chaotic system, with a minute alteration
to the system we could profoundly alter the system’s future behavior.

Ergodic Chaotic motion is ergodic, which means that the state space trajectory
of a chaotic system will always return to the local region of a previous point in the
trajectory. For example, we can define a local region of interest by a single point in
a state space and a distance measure. Every point in the state space that is within
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the specified distance from the point will be considered to be in the local region
of the point. If a system is ergodic, then no matter how small we make the local
region, as long as it’s nonzero, we are guaranteed that the system will eventually
return to this local region. Using the weather as an example, ergodicity means that
it is very likely that someday in the future you will experience weather almost—but
not exactly—identical to today’s weather.

Embedded Chaotic attractors are embedded with an infinite number of unstable
periodic orbits. Looking back at Figure 10.9, recall that the function f™(z) got
more and more complicated as we increased m. For any of the plots in Figure 10.9,
it is easy to see that the identity line, y = =, will intersect f™(z) at multiple
locations. For all points, z,, where f™(x) intersects the identity line, x, will be
part of a period-2™~1 unstable limit cycle. Since we can do this for any positive
value of m, it follows that there must be an infinite number of limit cycles embedded
within the chaotic attractor.

Over the next four chapters we will examine these and other properties of chaotic
systems. Chapter 11 will introduce us to chaos in multidimensional systems, strange
attractors, as well as some important tools of the trade for visualizing chaos. In
Chapter 12 we will examine a form of chaos that is commonly found in chemistry,
biology, ecology, and economics. In Chapter 13 we will take a closer look at how
chaos can be exploited to control the future. Finally, in Chapter 14, we will see how
incomputability, randomness, and chaos can be seen as multiple facets of a single
phenomenon.

10.7 Further Exploration

There are four programs that I used to generate all of the computed figures in this
chapter. In this section, I will briefly describe how to use these programs. The
command-line options for all of the programs are summarized in Table 10.2. As
with just about every other program listed in this book, most of the programs for
this chapter use the —term option to specify how images are plotted.

Another option that is common to all of the programs for this chapter is the
~func option, which can be used to specify what one-dimensional map to use. The
logistic map is the default map to use. Other possibilities include the tent map, the
sine map, and the Gaussian map.

The first program that you should try is genld, which will generate a one-
dimensional time series. You may wish to use the -x0 option to spe(:lfy the initial
point, and the -r option to specify the value of r to use.

The next program is phaseld, which can be used to generate state space plots.
As with genid, the -points option can be used to specify the number of points
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( Option Name LOption Type [ Option Meaning

Options Common to All Featured Programs

-points INTEGER number of points to plot

-skip INTEGER number of points to skip

-aux INTEGER value for auxiliary map parameter
-%0 INTEGER initial value, zg

~func STRING which map function to use

Options Only for genid, phaseld, and phaseld2

=

| INTEGER

| value for r

Options Only for phaseld, phaseld2, and bifurild

-width INTEGER width of the plot in pixels

-height INTEGER height of the plot in pixels

-inv SWITCH invert colors?

~-xmag  INTEGER magnification factor for X Windows
-term STRING how to plot points

Options Only for bifurid

~rmin INTEGER smallest value for r

~rmax INTEGER largest value for r

-factor INTEGER multiplicative factor for iterates
-ymin INTEGER smallest value for y-range
-ymax INTEGER largest value for y-range

~-box INTEGER line width for a box

~brmin INTEGER smallest r-value for the box
-brmax INTEGER largest r-value for the box
~bymin INTEGER smallest value for box y-range
~bymax INTEGER largest value for box y-range

Table 10.2 The command-line options for genld, phaselid, phaseld2 and bifurid

in the series. You may also change the initial value with -x0. You can skip the
first few initial points with the -skip option. This is useful if you only want to see
where a map will converge to, and not how it got there.

The program phase1d?2 is identical to phaseld except that you may use the -dx
option to specify where a second trajectory will start relative to the first trajectory.
This is useful if you want to see how rapidly two nearby points will diverge.

The last program for this chapter is bifurid, which you can use to plot bifur-
cation diagrams. You need to supply values with -rmin and -rmax to specify the
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first and final values of r to be contained in the bifurcation plot. Similarly, you
can change the y-ranges with ~ymin and -ymax. If you wish to use this program to
generate a PostScript image, generating a PGM file and converting it to PostScript
with pnmtops or xv is far more efficient.

Since the source code for all of the programs in this chapter includes the file
mapsid.c, to extend the capabilities of all of the programs, you only need to modify
mapsid.c. Contained in this file are the function definitions for the various one-
dimensional maps that you can use. The file is documented with an example of how
to add your own functions.
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