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Abstract For robot swarms to operate outside of the laboratory in complex real-world envi-
ronments, they require the kind of error tolerance, flexibility, and scalability seen in living
systems. While robot swarms are often designed to mimic some aspect of the behavior of
social insects or other organisms, no systems have yet addressed all of these capabilities
in a single framework. We describe a swarm robotics system that emulates ant behaviors,
which govern memory, communication, and movement, as well as an evolutionary process
that tailors those behaviors into foraging strategies that maximize performance under varied
and complex conditions. The system evolves appropriate solutions to different environmental
challenges. Solutions include the following: (1) increased communication when sensed infor-
mation is reliable and resources to be collected are highly clustered, (2) less communication
and more individual memory when cluster sizes are variable, and (3) greater dispersal with
increasing swarm size. Analysis of the evolved behaviors reveals the importance of interac-
tions among behaviors, and of the interdependencies between behaviors and environments.
The effectiveness of interacting behaviors depends on the uncertainty of sensed information,
the resource distribution, and the swarm size. Such interactions could not be manually spec-
ified, but are effectively evolved in simulation and transferred to physical robots. This work
is the first to demonstrate high-level robot swarm behaviors that can be automatically tuned
to produce efficient collective foraging strategies in varied and complex environments.
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1 Introduction

Robot swarms are appealing because they can be made from inexpensive components, their
decentralized design is well-suited to tasks that are distributed in space, and they are poten-
tially robust to communication errors that could render centralized approaches useless. A key
challenge in swarm engineering is specifying individual behaviors that result in desired col-
lective swarm performance without centralized control (Kazadi 2000; Winfield et al. 2005);
however, there is no consensus on design principles for producing desired swarm perfor-
mance from individual agent behaviors (Brambilla et al. 2013). Moreover, the vast majority
of swarms currently exist either as virtual agents in simulations or as physical robots in con-
trolled laboratory conditions (Winfield 2009; Brambilla et al. 2013) due to the difficulty of
designing robot swarms that can operate in natural environments. For example, even mun-
dane tasks such as garbage collection require operating in environments far less predictable
than swarms can currently navigate. Furthermore, inexpensive components in swarm robot-
ics lead to increased sensor error and a higher likelihood of hardware failure compared to
state-of-the-art monolithic robot systems.

This calls for an integrated approach that addresses the challenge of designing col-
lective strategies for complex and variable environments (Nelson et al. 2009; Haasdijk
et al. 2010). Pfeifer et al. (2007) argue that biologically inspired behaviors and physi-
cal embodiment of robots in an ecological niche can lead to adaptive and robust robots.
Here we describe such an approach for robot swarm foraging, demonstrate its effectiveness,
and analyze how individual behaviors and environmental conditions interact in successful
strategies.

This paper describes a robot swarm that forages for resources and transports them to a
central place. Foraging is an important problem in swarm robotics because it generalizes to
many real-world applications, such as collecting hazardous materials and natural resources,
search and rescue, and environmental monitoring (Liu et al. 2007; Parker 2009; Winfield
2009; Brambilla et al. 2013). We test to what extent evolutionary methods can be used to
generate error-tolerant, flexible, and scalable foraging behaviors in simulation and in physical
experiments conducted with up to 6 iAnt robots. The iAnt is an inexpensive platform (shown
in Fig. 1) capable of movement, memory, and communication, but with substantial sensing
and navigation errors, (Hecker et al. 2013).

Our approach to developing foraging strategies emulates biological processes in two ways.
First, robot behaviors are specified by a central-place foraging algorithm (CPFA) that mimics
the foraging behaviors of seed-harvester ants. Second, we use a genetic algorithm (GA) to
tune CPFA parameters to optimize performance in different conditions. The GA-tuned CPFA
is an integrated strategy in which movement, sensing, and communication are evolved and
evaluated in an environment with a particular amount of sensing and navigation error, a
particular type of resource distribution, and a particular swarm size. Our iAnt robots provide
a platform to test how well the GA can evolve behaviors that tolerate realistic sensing and
navigation errors, and how much those errors affect foraging performance given different
resource distributions and swarm sizes.

This study builds on important previous work in which robot swarms mimic a specific
component of ant foraging behavior. For example, substantial attention has been given to
pheromone communication (Payton et al. 2001; Sauter et al. 2002; Connelly et al. 2009),
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Fig. 1 a An iAnt robot. b A swarm of iAnt robots foraging for resources around a central illuminated beacon

and others have imitated ant navigation mechanisms, cooperative carrying, clustering, and
other isolated behaviors (Cao et al. 1997; Bonabeau et al. 1999; Şahin 2005; Trianni and
Dorigo 2006; Berman et al. 2011). Rather than imitating a specific behavior for a spe-
cific subtask, we evolve strategies that use different combinations of navigation, sens-
ing, and communication to accomplish a complete foraging task. This approach mimics
the way that ant foraging strategies evolve in nature. Ants do not decompose the forag-
ing problem into subtasks; rather, from a small set of behaviors, each species of ant has
evolved an integrated strategy tuned to its own particular environment. We emulate not just
the behaviors, but also the evolutionary process that combines those behaviors into inte-
grated strategies that are repeatedly tested in the real environments in which each species
forages.

Our study is the first to evolve foraging behaviors that are effective in varied and complex
environments. Previous studies have developed or evolved foraging behaviors for randomly
distributed resources (Balch 1999; Dartel et al. 2004; Liu et al. 2007), while others have
studied foraging from one or two infinite sources (Hoff et al. 2010; Francesca et al. 2014).
However, previous studies have not attempted to evolve strategies that are sufficiently flexible
to perform well in both of those environments, nor have they developed strategies that are
effective at collecting from more complex distributions. We show that foraging for resources
in heterogeneous clusters requires more complex communication, memory, and environ-
mental sensing than strategies evolved in previous work. This is important for robot swarms
operating outside of controlled laboratory environments because the features of natural land-
scapes are heterogeneous, and the complex topology of natural landscapes has a profound
impact on how animals search for resources (Turner 1989; Johnson et al. 1992; Wiens et al.
1993). In particular, the patchiness of environments and resources affects which foraging
behaviors are effective for seed-harvesting ants (Crist and Haefner 1994).

This work provides an automated process to adapt the high-level behaviors of individual
foragers to optimize collective foraging performance in complex environments with varied
resource distributions. Experiments show the evolution of complex strategies that are effective
when resources are clustered heterogeneously, the automatic adaptation of these strategies to
different distributions, and the evolution of a generalist strategy that is effective for a variety
of resource distributions (even when the distributions are not known a priori). We additionally
evolve foraging behaviors that are tolerant of real-world sensing and navigation error, and
scalable (in simulation) to large swarm sizes. The novelty of the approach is that it takes
into account interactions between the various behaviors that compose a foraging task (e.g.,
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exploration, exploitation by individuals, and recruitment), and interdependencies between
behaviors and the environmental context in which the behaviors evolve. The utility of this
approach is evident in two examples of how behaviors adapt and interact: (1) greater amounts
of communication evolve in experiments with clustered resource distributions, reliable sen-
sors, and small swarms; and (2) given a variety of pile sizes, robots evolve to exploit small
piles using individual memory and to exploit large piles using pheromone recruitment. More
generally, we show that efficient and flexible strategies can emerge when simple behaviors
evolve in response to complex and variable environments.

In summary, this work makes three main contributions: (1) We evolve a complete foraging
strategy composed of behaviors that interact with each other and that adapt to the navigation
and sensing errors of the robots, the environment, and the size of the swarm; (2) we auto-
matically tune foraging behaviors to be effective in varied and complex environments; and
(3) we analyze the evolved foraging strategies to understand how effective strategies emerge
from interactions between behaviors and experimental conditions.

2 Related work

This paper builds on a large body of related research in robot swarm foraging behaviors, ant
foraging behaviors, and our own prior work developing the CPFA and iAnt robot platform.

2.1 Automatic design of swarm foraging behaviors

The most common automatic design approach in swarm foraging is evolutionary robotics
(ER). Research in ER primarily focuses on using evolutionary methods to develop controllers
for autonomous robots (Meyer et al. 1998; Nolfi and Floreano 2000). Previous work in ER has
evolved neural networks to control lower-level motor functions in simulated robot agents;
controllers were subsequently transferred to real robots with success on several different
tasks (Baldassarre et al. 2007; Ampatzis 2008; Pini and Tuci 2008). One drawback of this
approach is that the evolved neural controllers are a black box—it is often not clear why a
particular controller is good for a particular task. Additionally, task generalization is diffi-
cult because evolved solutions are often overfitted to specific design conditions (Francesca
et al. 2014). Our approach mitigates these problems by tuning a simple set of behaviors
inspired by foraging ants. Because the behaviors are simple, the evolved parameters are rela-
tively easy to interpret. Additionally, because the GA fine-tunes predefined, high-level behav-
iors, it avoids overfitting solutions to idiosyncratic features of either simulated or physical
conditions.

Our GA evolves parameters to control the high-level behaviors we have observed and
modeled in ants. These parameters control the sensitivity threshold for triggering behav-
iors, the likelihood of transitioning from one behavior to another, and the length of time
each behavior should last. Several previous projects have taken an approach similar to our
own, using learning and optimization techniques to tune a fixed repertoire of higher-level
swarm foraging behaviors, rather than lower-level motor controllers or basic directional
responses. Matarić (1997a, b) used reinforcement learning to train robots to switch between
behaviors through positive and negative reinforcement related to foraging success. Similar
to Matarić, Balch (1999) trained robot teams to perform multiple foraging tasks simultane-
ously using Q-learning with a shaped reinforcement reward strategy. Labella et al. (2006)
implemented adaptive swarm foraging, observing emergent division of labor using only local
information and asynchronous communication. Liu and Winfield (2010) used a GA to tune a

123



Swarm Intell

macroscopic probabilistic model of adaptive collective foraging, optimizing division of labor
and minimizing energy use. Francesca et al. (2014) used a parameter optimization algorithm
to automatically construct probabilistic behavioral controllers for swarm aggregation and for-
aging tasks. These previous studies have tested swarms on simple foraging tasks that required
no communication. Instead, we focus on more difficult foraging tasks in which communica-
tion among robots increases collective foraging efficiency. Efficient foraging in environments
with more complex resource distributions necessitates more complex foraging strategies. In
our study, robots alter the environment by collecting food and by laying pheromones, and
those alterations affect future robot behavior. Therefore, these foraging strategies cannot be
practically represented by the finite state machines often used in prior work (see Liu and
Winfield 2010; Francesca et al. 2014).

2.2 Foraging in desert harvester ants

The CPFA mimics foraging behaviors used by desert seed-harvester ants. Desert harvester
ants collect seeds that are scattered in space and remain available for long time periods, but
foraging under hot, dry conditions limits seed collection to short time windows during which
not all available resources can be collected (Gordon and Kulig 1996). We emulate harvester
ant foraging strategies that have evolved to collect many seeds quickly, but not exhaustively
collect all available seeds. Colonies must adapt their foraging strategies to seasonal variations
in environmental conditions and competition with neighbors (Adler and Gordon 2003).

Foragers initially disperse from their central nest in a travel phase, followed by a search
phase (Fewell 1990) in which a correlated random walk is used to locate seeds (Crist and
MacMahon 1991). Foragers then navigate home to a remembered nest location (Hölldobler
1976). Seed-harvester ants typically transport one seed at a time, often searching the sur-
rounding area and sometimes sampling other seeds in the neighborhood of the discovered
seed (Hölldobler 1976). Letendre and Moses (2013) hypothesized that this behavior is used
to estimate local seed density.

Ants can sense direction using light polarization, remember landmarks (Hölldobler 1976),
and, even in the absence of visual cues, measure distance using odometry (Wohlgemuth et al.
2001; Thiélin-Bescond and Beugnon 2005). These mechanisms enable ants to navigate back
to previously visited sites and return to their nest (Hölldobler 1976), sometimes integrating
visual cues to rapidly remember and straighten their homebound paths (Müller and Wehner
1988).

It is frequently observed that an individual ant will remember the location of a previously
found seed and repeatedly return to that location (Hölldobler 1976; Crist and MacMahon
1991; Beverly et al. 2009). This behavior is called site fidelity. When foragers return to a site
using site fidelity, they appear to alter their search behavior such that they initially search
the local area thoroughly, but eventually disperse to search more distant locations (Flanagan
et al. 2012). We model this process using a biased random walk that is initially undirected
and localized with uncorrelated, tight turns (as in Flanagan et al. 2011; Letendre and Moses
2013). Over time, successive turning angles become more correlated, causing the path to
straighten.

Many ants also lay pheromone trails from their nest to food patches (Goss et al. 1989;
Bonabeau et al. 1997; Camazine et al. 2001; Sumpter and Beekman 2003; Jackson et al.
2007). Foragers at the nest then follow these pheromone trails, which direct the ants to high-
quality food patches via the process of recruitment. Trails are reinforced through positive
feedback by other ants that follow trails with a probability that increases as a function of
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the chemical strength of the trail. Recruitment by pheromone trails is rare in seed harvesters
except in response to very large and concentrated seed piles (Gordon 1983, 2002).

2.3 Foundations of the CPFA

In prior work, we observed and modeled ants foraging in natural environments (Flanagan
et al. 2012), parameterized those models using a GA that maximized seed collection rates
for different resource distributions (Flanagan et al. 2011; Letendre and Moses 2013), and
instantiated those foraging parameters in robot swarms (Hecker et al. 2012; Hecker and
Moses 2013; Hecker et al. 2013). This process has led to the robot foraging algorithms we
describe here.

Flanagan et al. (2012) conducted manipulative field studies on three species of Pogono-
myrmex desert seed-harvesters. In order to test behavioral responses to different food distrib-
utions, colonies were baited with seeds clustered in a variety of pile sizes around each ant nest.
Ants collected seeds faster when seeds were more clustered. An agent-based model (ABM)
simulated observed foraging behaviors, and a GA was used to find individual ant behavioral
parameters that maximized the seed collection rate of the colony. Simulated ants foraging
with those parameters mimicked the increase in seed collection rate with the amount of clus-
tering in the seed distribution when ant agents were able to remember and communicate seed
locations using site fidelity and pheromones (Flanagan et al. 2011).

Letendre and Moses (2013) tested the ABM and observed how model parameters and
foraging efficiency changed with different distributions of resources. Simulations showed
that both site fidelity and pheromone recruitment were effective ways to collect clustered
resources, with each behavior increasing foraging success on clustered seed distributions by
more than tenfold, compared to a strategy which used no memory or communication. Both
site fidelity and pheromones were beneficial, but less so, with less clustered seed distributions.
Further, simulations demonstrated an important synergy between site fidelity and pheromone
recruitment: Each behavior became more effective in the presence of the other behavior
(Moses et al. 2013).

Letendre and Moses (2013) also showed that a GA could effectively fine-tune the reper-
toire of ant foraging behaviors to different resource distributions. Parameters evolved for
specific types of resource distributions were swapped, and fitness was measured for the new
distribution; for example, parameters evolved for a clustered distribution were tested on ran-
dom distributions of resources. Simulated agents incurred as much as a 50 % decrease in
fitness when using parameters on a distribution different from the one for which they were
evolved.

The robot algorithms and experiments described in this paper are informed by insights
from these studies and simulations of ant foraging: (1) The success of a foraging strategy
depends strongly on the spatial distribution of resources that are being collected, and (2)
memory (site fidelity) and communication (pheromones) are critical components of foraging
strategies when resources are clustered.

We simplified and formalized the behaviors from Letendre and Moses (2013) into a robot
swarm foraging algorithm, the CPFA, in Hecker and Moses (2013). In this work, we showed
that a GA, using a fitness function that included a model of iAnt sensing and navigation errors,
could evolve CPFA parameters to generate behaviors that improved performance in physical
iAnt robots. The CPFA is designed to provide a straightforward way to interpret parameters
evolved by the GA in order to assess how movement patterns, memory, and communication
change in response to different sensor errors, resource distributions, and swarm sizes. The
CPFA also reflects the fact that our physical robots lack the ability to lay chemical pheromone
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Fig. 2 We use a GA to evolve a foraging strategy (CPFA parameter set) that maximizes resource collection
for specified classes of error model, environment, and swarm size. We then evaluate the foraging strategy
in multiple experiments with simulated and physical robots and record how many resources were collected.
We repeat this for different error models, environments, and swarm sizes. We analyze flexibility by evolving
parameters for one condition and evaluating them in another

trails. Instead, pheromones are simulated in a list of pheromone-like waypoints (described
below).

The work presented here is a comprehensive study of the GA, CPFA, and iAnt platform.
We extend our previous results by performing a systematic analysis of (1) error tolerance to
adapt CPFA parameters to improve performance given errors inherent to the iAnt robots, (2)
flexibility to forage effectively for a variety of resource distributions in the environment, and
(3) scalability to increasing swarm size with up to 6 physical robots and up to 768 simulated
robots.

3 Methods

The design components of our system include the CPFA, the GA, the physical iAnt robots, the
sensor error model, and the experimental setup. The error tolerance, flexibility, and scalability
of our robot swarms are tested under different experimental conditions. The framework for
our approach is shown in Fig. 2.

3.1 Central-place foraging algorithm

The CPFA implements a subset of desert seed-harvester ant foraging behaviors (see Sect. 2.2)
as a series of states connected by directed edges with transition probabilities (Fig. 3). The
CPFA acts as the high-level controller for our simulated and physical iAnt robots. Parameters
governing the CPFA transitions are listed in Table 1, and CPFA pseudocode is shown in
Algorithm 1.

Each robot transitions through a series of states as it forages for resources:

123



Swarm Intell

Set Search
Location

Travel to 
Search Site

Search with
Uninformed

Walk

Search with
Informed

Walk
Pheromones

Random site

Return to
Nest

Find
and collect

resource

Start

Sense Local
Resource Density

Give up
search

(a) (b)

Fig. 3 a State diagram describing the flow of behavior for individual robots during an experiment. b An
example of a single cycle through this search behavior. The robot begins its search at a central nest site (double
circle) and sets a search location. The robot then travels to the search site (solid line). Upon reaching the
search location, the robot searches for resources (dotted line) until a resource (square) is found and collected.
After sensing the local resource density, the robot returns to the nest (dashed line)

Table 1 Set of 7 CPFA
parameters evolved by the GA

Parameter Description Initialization function

ps Probability of switching to searching U(0, 1)

pr Probability of returning to nest U(0, 1)

ω Uninformed search variation U(0, 4π )

λid Rate of informed search decay exp(5)

λsf Rate of site fidelity U(0, 20)

λlp Rate of laying pheromone U(0, 20)

λpd Rate of pheromone decay exp(10)

• Set search location: The robot starts at a central nest and selects a dispersal direction, θ ,
initially from a uniform random distribution, U(0, 2π). In subsequent trips, the robot may
set its search location using site fidelity or pheromone waypoints, as described below.
• Travel to search site: The robot travels along the heading θ , continuing on this path until

it transitions to searching with probability ps.
• Search with uninformed walk: If the robot is not returning to a previously found resource

location via site fidelity or pheromones, it begins searching using a correlated random
walk with fixed step size and direction θt at time t , defined by Eq. 1:

θt = N (θt−1, σ ) (1)

The standard deviation σ determines how correlated the direction of the next step is with
the direction of the previous step. Robots initially search for resources using an uninformed
correlated random walk, where σ is assigned a fixed value in Eq. 2:

σ ← ω (2)

If the robot discovers a resource, it will collect the resource by adding it to a list of collected
items, and transition to sensing the local resource density. Robots that have not found a
resource will give up searching and return to the nest with probability pr .
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Algorithm 1 Central-Place Foraging Algorithm
1: Disperse from nest to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if resource found then
5: Collect resource
6: Count number of resources c near current location l f
7: Return to nest with resource
8: if Pois(c, λlp) > U (0, 1) then
9: Lay pheromone to l f
10: end if
11: if Pois(c, λs f ) > U (0, 1) then
12: Return to l f
13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location l p
16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

• Search with informed walk: If the robot is informed about the location of resources (via
site fidelity or pheromones), it searches using an informed correlated random walk, where
the standard deviation σ is defined by Eq. 3:

σ = ω + (4π − ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t , producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search locally
where it expects to find a resource, but to straighten its path and disperse to another location
if the resource is not found. If the robot discovers a resource, it will collect the resource by
adding it to a list of collected items, and transition to sensing the local resource density.
Robots that have not found a resource will give up searching and return to the nest with
probability pr .
• Sense local resource density: When the robot locates and collects a resource, it records a

count c of resources in the immediate neighborhood of the found resource. This count c
is an estimate of the density of resources in the local region.
• Return to nest: After sensing the local resource density, the robot returns to the nest. At the

nest, the robot uses c to decide whether to use information by (1) returning to the resource
neighborhood using site fidelity, or (2) following a pheromone waypoint. The robot may
also decide to communicate the resource location as a pheromone waypoint.

Information decisions are governed by parameterization of a Poisson cumulative distrib-
ution function (CDF) as defined by Eq. 4:

Pois(k, λ) = e−λ

�k�∑

i=0

λi

i ! (4)

The Poisson distribution represents the probability of a given number of events occurring
within a fixed interval of time. We chose this formulation because of its prevalence in previous
ant studies, e.g., researchers have observed Poisson distributions in the dispersal of foragers
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(Hölldobler and Wilson 1978), the density of queens (Tschinkel and Howard 1983), and the
rate at which foragers return to the nest (Prabhakar et al. 2012).

In the CPFA, an event corresponds to finding an additional resource in the immediate
neighborhood of a found resource. Therefore, the distribution Pois(c, λ) describes the like-
lihood of finding at least c additional resources, as parameterized by λ. The robot returns to
a previously found resource location using site fidelity if the Poisson CDF, given the count
c of resources, exceeds a uniform random value: Pois(c, λsf ) > U(0, 1). Thus, if c is large,
the robot is likely to return to the same location using site fidelity on its next foraging trip.
If c is small, it is likely not to return, and instead follows a pheromone to another location if
pheromone is available. If no pheromone is available, the robot will choose its next search
location at random. The robot makes a second independent decision based on the count c
of resources: It creates a pheromone waypoint for a previously found resource location if
Pois(c, λlp) > U(0, 1).

Upon creating a pheromone waypoint, a robot transmits the waypoint to a list maintained
by a central server. As each robot returns to the nest, the server selects a waypoint from the
list (if available) and transmits it to the robot. New waypoints are initialized with a value of
1. The strength of the pheromone, γ , decays exponentially over time t as defined by Eq. 5:

γ = e−λpd t (5)

Waypoints are removed once their value drops below a threshold of 0.001. We use the same
pheromone-like waypoints in simulation to replicate the behavior of the physical iAnts.

3.2 Genetic algorithm

There are an uncountable number of foraging strategies that can be defined by the real-valued
CPFA parameter sets in Table 1 (even if the 7 parameters were limited to single decimal point
precision, there would be 710 possible strategies). We address this intractable problem by
using a GA to generate foraging strategies that maximize foraging efficiency for a particular
error model, resource distribution, and swarm size.

The GA evaluates the fitness of each strategy by simulating robots that forage using
the CPFA parameter set associated with each strategy. Fitness is defined as the foraging
efficiency of the robot swarm: the total number of resources collected by all robots in a fixed
time period. Because the fitness function must be evaluated many times, the simulation must
run quickly. Thus, we use a parsimonious simulation that uses a gridded, discrete world
without explicitly modeling sensors or collision detection. This simple fitness function also
helps to mitigate condition-specific idiosyncrasies and avoid overfitted solutions, a problem
noted by Francesca et al. (2014).

We evolve a population of 100 simulated robot swarms for 100 generations using recom-
bination and mutation. Each swarm’s foraging strategy is randomly initialized using uniform
independent samples from the initialization function for each parameter (Table 1). Five para-
meters are initially sampled from a uniform distribution, U(a, b), and two from exponential
distributions, exp(x), within the stated bounds. Robots within a swarm use identical para-
meters throughout the hour-long simulated foraging experiment. During each generation, all
100 swarms undergo 8 fitness evaluations, each with different random placements drawn
from the specified resource distribution.

At the end of each generation, the fitness of each swarm is evaluated as the sum total of
resources collected in the 8 runs of a generation. Deterministic tournament selection with
replacement (tournament size=2) is used to select 99 candidate swarm pairs. Each pair
is recombined using uniform crossover and 10 % Gaussian mutation with fixed standard

123



Swarm Intell

deviation (0.05) to produce a new swarm population. We use elitism to copy the swarm with
the highest fitness, unaltered, to the new population—the resulting 100 swarms make up the
next generation. After 100 generations, the evolutionary process typically converges on a set
of similar foraging strategies; the strategy with highest fitness at generation 100 is kept as
the best foraging strategy.

We repeat the evolutionary process 10 times to generate 10 independently evolved foraging
strategies for each error model, resource distribution, and swarm size. We then evaluate the
foraging efficiency of each of those 10 strategies using 100 new simulations, each of which
uses the CPFA with specified parameters and a new random placement of resources.

3.3 iAnt robot platform

iAnt robots are constructed from low-cost hardware and range-limited sensors. Our iAnt
robot design has been updated and enhanced over three major revisions to improve exper-
imental repeatability and to decrease the reality gap between simulated and physical robot
performance.

The current iAnt platform (see Fig. 1) is supported by a custom-designed laser-cut chassis,
low-geared motors to provide high torque, and a 7.4-V battery that provides consistent power
for 60 min. The iAnt uses an Arduino Uno microcontroller, combined with an Ardumoto
motor shield, to coordinate low-level movement and process on-board sensor input. Sensors
include a magnetometer and ultrasonic rangefinder, as well as an iPod Touch to provide iAnts
with forward-facing and downward-facing cameras, in addition to computational power.
Robots use the OpenCV computer vision library to process camera images. The forward-
facing camera is used to detect a central nest beacon, and the downward-facing camera is
used to detect QR matrix barcode tags. iAnt cost is approximately $500, with an assembly
time of approximately 2 h. Detailed platform specifications and assembly instructions are
available online (Moses et al. 2014).

3.4 Physical sensor error model

Two sensing components are particularly error-prone in our iAnt robot platform: positional
measurement and resource detection. In prior work, we reduced the reality gap between
simulated and physical robots by measuring sensing and navigation error, then integrating
models of this error into our agent-based simulation (Hecker et al. 2013). In this work, the
goal is to understand ways in which behaviors evolve to mitigate the effects of error on
foraging performance.

We measured positional error in 6 physical robots while localizing to estimate the location
of a found resource, and while traveling to a location informed by site fidelity or pheromones.
We replicated each test 20 times for each of 6 robots, resulting in 120 measurements from
which we calculated means and standard deviations for both types of positional error. We
performed a linear regression of the standard deviation of positional error on the distance from
the central beacon and observed that standard deviation ς increased linearly with localization
distance dl, ς = 0.12dl − 16 cm (R2 = 0.58, p < 0.001), and travel distance dt, ς =
0.37dt + 0.02 cm (R2 = 0.54, p < 0.001).

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360◦,
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(a) Clustered (b) Power law (c) Random

Fig. 4 A total of 256 resources are placed in one of three distributions: a the clustered distribution has four
piles of 64 resources. b The power law distribution uses piles of varying size and number: one large pile of 64
resources, 4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources.
c The random distribution has each resource placed at a uniform random location

scanning for a tag every 10◦ with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55 % of tags
and neighbor-searching robots detected 43 % of tags.

3.5 Experimental setup

• Physical: Each physical experiment runs for 1 h on a 100 m2 indoor concrete surface.
Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags. A cylin-
drical illuminated beacon with radius 8.9 cm and height 33 cm marks the center nest to
which the robots return once they have located a resource. This center point is used for
localization and error correction by the robots’ ultrasonic sensors, magnetic compass, and
forward-facing camera. All robots involved in an experiment are initially placed near the
beacon. Robots are programmed to stay within a ‘virtual fence’ that is a radius of 5 m
from the beacon. In every experiment, QR tags representing resources are arranged in one
of three distributions (see Fig. 4): clustered (4 randomly placed clusters of 64 resources
each), power law (1 large cluster of 64, 4 medium clusters of 16, 16 small clusters of 4,
and 64 randomly scattered), or random (each resource placed at a random location).
• Robot locations are continually transmitted over one-way WiFi communication to a central

server and logged for later analysis. Robots do not pick up physical tags, but instead
simulate this process by reading the tag’s QR code, reporting the tag’s unique identification
number to a server, and returning within a 50 cm radius of the beacon, providing a detailed
record of tag discovery. Tags can only be read once, simulating tag retrieval.
• Simulated: Swarms of simulated robot agents search for resources on a 125×125 cellular

grid; each cell simulates an 8 × 8 cm square. The simulation architecture replicates the
physical dimensions of our real robots, their speed while traveling and searching, and the
area over which they can detect resources. The spatial dimensions of the grid reflect the
distribution of resources over a 100 m2 physical area, and agents search for a simulated
hour. Resources are placed on the grid (each resource occupies a single grid cell) in one of
three distributions: clustered, power law, or random. We use the same resource distribution
as in the physical experiments, although physical and simulated resources are not in the
same locations. Instead, each individual pile is placed at a new random, non-overlapping
location for each fitness evaluation to avoid bias or convergence to a specific resource
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layout. We use an error model to emulate physical sensing and navigation errors in some
simulations (see Sect. 3.4).

3.6 Performance evaluation

Here we describe the methods and metrics used to empirically evaluate the error tolerance,
flexibility, and scalability of our iAnt robot swarms. We use these metrics to measure the
ability of the GA to tune CPFA parameters to maximize the foraging efficiency of swarms
under varying experimental conditions. We define efficiency as the total number of resources
collected within a fixed 1-h experimental window. In some cases, we measure efficiency per
swarm, and in others we measure efficiency per robot. Efficiency per swarm serves as the GA
fitness function when evolving populations of robot swarms in our agent-based simulation.
We characterize error tolerance, flexibility, and scalability by comparing E1 and E2, where
E1 and E2 are efficiency measurements under two different experimental conditions. In
addition to using performance metrics to measure efficiency changes, our analysis also reveals
evolutionary changes in parameters that lead to these changes in efficiency.

3.6.1 Error tolerance

We measure how well simulated and physical robots mitigate the effects of the error inherent
to iAnts. In simulation, error tolerance is measured only in experiments in which simulated
robots forage using the model of iAnt sensor error described in Sect. 3.4. For robots foraging
with such error, error tolerance is defined as:

E2 − E1

E1
× 100 % (6)

where E1 is the efficiency of a strategy evolved assuming no error and E2 is the efficiency of
a strategy evolved in the presence of error. This set of experiments demonstrates the ability
of our system to increase foraging success given realistic sensor error. Note that simulated
robots foraging in the presence of error can never outperform robots foraging without error
and that physical robots always forage in the presence of the inherent iAnt robot error.

3.6.2 Flexibility

Flexibility is defined as:
E2

E1
× 100 % (7)

where E1 is the efficiency of the best strategy evolved for a given resource distribution, and
E2 is the efficiency of an alternative strategy evolved for a different resource distribution but
evaluated on the given resource distribution. A strategy that is 100 % flexible is one that has
been evolved for a different distribution but is equally efficient on the target distribution. We
measure flexibility the same way in physical and simulated robots.

We measure flexibility by evolving swarms of 6 simulated robots foraging independently
on each of the three resource distributions (see Fig. 4). When the evolution is complete, we
then evaluate each of the three evolved strategies on all three distributions: the one for which
they were evolved, as well as the other two (see Fig. 2). For example, a robot swarm is evolved
to forage on power-law-distributed resources, and then the swarm is evaluated for efficiency
on the power law distribution, as well as the clustered and random distributions.
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3.6.3 Scalability

Scalability is defined using Eq. 7, where E1 is the efficiency of 1 robot, and E2 is the efficiency
per robot of a larger swarm. Note that E1 and E2 are defined per robot for scalability, while
E1 and E2 are defined per swarm for error tolerance and flexibility. We measure scalability
from 1 to 6 physical robots, and from 1 to 768 simulated robots.

We measure scalability by evolving swarms of 1, 3, and 6 simulated robots foraging on
a power law distribution in a world with error, using the experimental setup described in
Sect. 3.5. When the evolution is complete, we then evaluate physical and simulated swarms
of 1, 3, and 6 robots using the parameters evolved specifically for each swarm size.

We can measure scalability more thoroughly in simulation, where we analyze 1–768
simulated robots in a large simulation space: a 1,323 × 1,323 cellular grid, replicating an
approximate 11,000 m2 physical area. We evolve simulated swarms foraging for 28,672
resources divided into groups: 1 cluster of 4,096 resources, 4 clusters of 1,024, 16 clusters of
256, 64 clusters of 64, 256 clusters of 16, 1,024 clusters of 4, and 4,096 resources randomly
scattered. We then evaluate each evolved foraging strategy on the swarm size for which they
were evolved. We additionally evaluate a fixed set of parameters evolved for a swarm size of
6 (i.e., parameters are evolved for a swarm size of 6, but evaluated in swarm sizes of 1–768)
to test the flexibility of a fixed strategy for different numbers of robots.

Finally, we test the effect on site fidelity and pheromones by evolving simulated swarms
using the large experimental setup described above, except with information use disabled for
all robots in the swarm. Because robots are not able to remember or communicate resource
locations, the CPFA parameters λid, λsf , λlp, and λpd no longer affect robot behavior. This
restricts the GA to evolving strategies that govern only the movement patterns specified by the
search and travel behaviors (pr, ps, and ω). We compare the efficiency of such strategies to the
efficiency of swarms using the full CPFA to evaluate how much memory and communication
improve foraging performance for different swarm sizes.

4 Results

Results below compare parameters and foraging efficiency of the best evolved foraging
strategies, where efficiency is the total number of resources collected by a robot swarm
during an hour-long experiment. Results that compare parameters show means and standard
deviations of the 10 foraging strategies evolved in simulation; error bars (when shown)
indicate one standard deviation of the mean. Results that compare foraging efficiency show
the single best of those 10 strategies evaluated 100 times in simulation and 5 times in physical
iAnt robots, for each error model, resource distribution, and swarm size.

4.1 Error tolerance

Figure 5 shows best and mean fitness curves for simulated robot swarms foraging with and
without sensor error on clustered, power law, and randomly distributed resources. Robot
swarms adapted for randomly distributed resources have the most stable fitness function,
followed by power-law-adapted and cluster-adapted swarms. Fitness stabilizes for all three
distributions after approximately 20 generations. Real-world sensor error has the largest
effect on power-law-adapted swarms, reducing mean fitness by 44 % by generation 100 (mean
fitness without error=170, mean fitness with error=96). Sensor error reduces mean fitness
by 42 % for cluster-adapted swarms (without error=190, with error=110), and by 25 %
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Fig. 5 Best and mean fitness, measured as foraging efficiency (resources collected per hour, per swarm) for
simulated swarms foraging on a clustered, b power law, and c random resource distributions with and without
real-world sensor error. Results are for 100 replicates
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Fig. 6 Foraging efficiency (resources collected per hour, per swarm) using error-adapted and non-error-
adapted parameters for a 6 robots foraging in a simulation that includes sensor error and b 6 physical robots.
Asterisks indicate a statistically significant difference (p < 0.001)

for random-adapted swarms (without error=160, with error=120). Thus, not surprisingly,
robots with error are always less efficient than robots without error. In idealized simulations
without robot error, efficiency is higher for the more clustered distributions; but when the
model of iAnt error is included, efficiency is highest for randomly dispersed resources.

Figure 6 shows the efficiency of simulated and physical robot swarms foraging on clus-
tered, power law, and random resource distributions using error-adapted and non-error-
adapted parameters. The GA evolves error-adapted swarms that outperform non-error-
adapted swarms in worlds with error. The error-adapted strategies improve efficiency on the
clustered and power law distributions: error tolerance (Eq. 6) is 14 and 3.6 % for simulated
robots, and 14 and 6.5 % for physical robots (Fig. 6). The effect of error-adapted parame-
ters in simulated robots foraging on the clustered distribution was significant (t(198)=3.6,
p < 0.001), and the effect for simulated robots on the power law distribution was marginally
significant (t(198)=1.8, p = 0.07). Efficiency was not significantly different for simulated
or physical robots foraging on randomly distributed resources.
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Fig. 7 For error-adapted and non-error-adapted swarms foraging on clustered resources, a the probability of
laying pheromone as a function of the count c of resources in the neighborhood of the most recently found
resource (Eq. 4: k ← c, λ ← λlp), and b the pheromone waypoint decay rate (λpd). Asterisks indicate a
statistically significant difference (p < 0.001)

Figure 7 compares the probability of laying pheromone (Fig. 7a) and the rate of pheromone
decay (Fig. 7b) in error-adapted and non-error-adapted swarms foraging for clustered
resources. Error-adapted strategies are significantly more likely to use pheromones than non-
error-adapted strategies when 4 or fewer resources are detected in the local neighborhood of a
found resource (i.e., when c ≤ 4, see Fig. 7a). We interpret the increase in pheromone use for
small c as a result of sensor error (only 43 % of neighboring resources are actually detected by
iAnts). The evolved strategy compensates for the decreased detection rate by increasing the
probability of laying pheromone when c is small. In other words, given sensor error, a small
number of detected tags indicates a larger number of actual tags in the neighborhood, and
the probability of laying pheromone reflects the probable number of tags actually present.

In error-adapted swarms, pheromone waypoints are evolved to decay 3.3 times slower than
in swarms evolved without sensor error (Fig. 7b). Slower pheromone decay compensates for
both positional and resource detection error. Robots foraging in worlds with error are less
likely to be able to return to a found resource location, as well as being less likely to detect
resources once they reach the location; therefore they require additional time to effectively
make use of pheromone waypoints.

Sensor error affects the quality of information available to the swarm. These experiments
show that including sensor error in the clustered simulations causes the GA to select for
pheromones that are laid under more conditions and that last longer. This increased use of
pheromones is unlikely to lead to overexploitation of piles because robots will have error
in following the pheromones and in detecting resources. Thus, while pheromones can lead
to overexploitation of found piles (and too little exploration for new piles) in idealized sim-
ulations (Letendre and Moses 2013), overexploitation is less of a problem for robots with
error.

Figures 5, 6, and 7 show that error has a strong detrimental effect on the efficiency of
swarms foraging for clustered resources. Swarms foraging on random distributions are only
affected by resource detection error; however, the efficiency of cluster-adapted swarms is
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Fig. 8 Foraging efficiency (resources collected per hour, per swarm) using parameters adapted to different
resource distributions for a 6 robots foraging in a simulation that includes sensor error and b 6 physical robots.
Asterisks indicate a statistically significant difference (p < 0.001)

reduced by both positional and detection error. Generally speaking, different types of error
affect different strategies in different ways (Hecker and Moses 2013). In situations where
resources are clustered, as is often the case in the real world (Wiens et al. 1993; Crist and
Haefner 1994; Wilby and Shachak 2000), it is beneficial to adapt to the sensor error experi-
enced by real robots.

4.2 Flexibility

Figure 8 shows the efficiency of simulated and physical robot swarms evolved on one resource
distribution (clustered, power law, or random) and then evaluated on all three distributions. All
results are for 6 simulated or physical robots foraging with error. As expected, robot swarms
evolved for each of the three distributions perform best when evaluated on that distribution.
That is, cluster-adapted swarms perform best on the clustered distribution, power-law-adapted
swarms perform best on the power law distribution, and random-adapted swarms perform best
on the random distribution. Strategy specialization is best illustrated in foraging experiments
on the clustered distribution: The cluster-adapted strategies are twice as efficient as the
random-adapted strategies.

Figure 8 demonstrates that the GA is able to evolve both specialist and generalist strategies.
If the resource distribution is known a priori, then the robot swarm will be most efficient
when using a specialist strategy adapted for that distribution. However, power-law-adapted
strategies are sufficiently flexible (Eq. 7) to function well on all three distributions. Simulated
robot swarms using power-law-adapted parameters are 82 % as efficient as cluster-adapted
swarms when evaluated on a clustered distribution, and 86 % as efficient as random-adapted
swarms when evaluated on a random distribution. The power-law-adapted strategy is also
the most flexible strategy for physical robot swarms: Power-law-adapted swarms are 93 %
as efficient as cluster-adapted swarms on a clustered distribution, and 96 % as efficient as
random-adapted swarms on a random distribution.
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While Fig. 8 demonstrates the expected result that specialist strategies are most efficient,
Fig. 9 illustrates several ways in which strategies are specialized. The four-panel figure shows
the probability of exploiting information about resource density in the local neighborhood of
a found resource in worlds with error (top) and worlds without error (bottom) by returning to
the site via site fidelity (Fig. 9a, c) or laying pheromone (Fig. 9b, d). Error-adapted swarms
evolved to forage for clustered distributions show large and consistent differences from
swarms evolved for power law distributions: They are 3.5 times less likely to return to a site
via site fidelity with a single resource in the local neighborhood (Fig. 9a), and 7.8 times more
likely to lay pheromone (Fig. 9b). Non-error-adapted swarms evolved to forage for clustered
distributions are equally likely to return to a site via site fidelity with a single resource in
the local neighborhood (Fig. 9c), but twice as likely to lay pheromone (Fig. 9d), compared
to swarms evolved for power law distributions. In all cases, swarms evolved for random
distributions have a significantly lower probability of returning to a site via site fidelity or
pheromones.

These results show differences in how each strategy is evolved to use information for
different resource distributions, and how these strategies adapt to error by changing how
swarms communicate information. Cluster-adapted strategies make frequent use of both
memory (site fidelity) and communication (pheromones). Power-law-adapted strategies are
nearly equally likely to use memory as cluster-adapted strategies (Fig. 9a, c), but they are less
likely to use pheromones (Fig. 9b, d). In contrast, swarms foraging on random distributions
neither benefit from information, nor evolve to use it. This result also helps to explain why
random-adapted swarms with error experience a relatively small change in fitness (Fig. 5c):
Information is irrelevant for random-adapted strategies, therefore error in information has no
effect on swarms using these strategies.

The differences among the strategies are most evident when the local resource density
estimate c is small: Site fidelity and laying pheromones are both effectively absent in ran-
dom strategies, but they are important components of strategies for clustered distributions.
Additionally, it is particularly likely that c will be small in the environment during evalua-
tion when resources are distributed at random. Thus, for clustered distributions, robots are
both more likely to lay pheromones for any given c, and more likely to detect large c in the
environment, further increasing the probability that pheromones will be laid. This illustrates
that the likelihood of a particular behavior being used depends both on the rules that have
evolved and on the environment in which it is evaluated.

This point is further illustrated by considering the response to encountering large c: The
random strategy evolves a nonzero probability of using site fidelity and laying pheromones
when nine resources are discovered. However, the probability of encountering a cluster with
nine adjacent resources is vanishingly small in a random resource distribution. Since that
condition is never encountered, there is no selective pressure on behaviors under that condi-
tion. Thus, the probability of laying pheromone in a random-adapted strategy is effectively
zero because the GA evolves zero probability for the cases that are actually encountered.

When interpreting Fig. 9, it is important to note trade-offs and interactions among
behaviors. If a robot decides to return to a site via site fidelity, it necessarily cannot fol-
low pheromone (Algorithm 1, lines 11–16). Thus, the decision to return to a site via site
fidelity preempts the decision to follow pheromones, such that the probability of following
pheromone is at most 1 − Pois(c, λsf ). However, a robot can both lay a pheromone to a
site (Algorithm 1, lines 8–9) and return to that site via site fidelity (Algorithm 1, lines 11–
13). Furthermore, a robot can return to its own previously discovered site by following its
own pheromone. This alternative method of returning to a previously found resource by a
robot following its own pheromone may in part explain the lower values of Pois(c, λsf ) for
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Fig. 9 For error-adapted swarms (top) and non-error-adapted swarms (bottom), a, c the probability of returning
to a site (Eq. 4: k ← c, λ ← λsf ) and b, d the probability of laying pheromone (Eq. 4: k ← c, λ ← λlp)
given the number of resources c in the neighborhood of a found resource

the error-adapted clustered strategy: Pois(c, λsf ) may be low because Pois(c, λlp) is high
(Fig. 9a, b).

These strategies produced by the GA logically correspond with the resource distribution
for which they were evolved. All of the resources in the clustered distribution are grouped into
large piles, so finding a single resource is predictive of additional resources nearby. Power-
law-adapted swarms are more selective when deciding to share a resource location because
robots encounter both large piles and small piles, as well as randomly scattered resources;
thus, power-law-adapted swarms have evolved to be more cautious when laying pheromones
to avoid recruiting to low-quality resource sites. The power-law-adapted strategies are also the
most variable in their use of site fidelity and pheromones, suggesting that many combinations
of the two are effective given a distribution with a variety of pile sizes.
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Fig. 10 Foraging efficiency (resources collected per hour, per robot) of 1, 3, and 6 robots foraging on a power
law distribution for a swarms in a simulation that includes sensor error and b physical swarms. All results are
statistically different (p < 0.001)

4.3 Scalability

Figure 10 shows the efficiency per robot of simulated and physical swarms with 1, 3, and 6
robots foraging on a power law resource distribution in a world with error. Not surprisingly,
we observe that both simulated and physical swarms collect more resources as swarm size
increases; however, larger swarms are less scalable (Eq. 7, where E1 and E2 are defined per
robot). In simulation, scalability to 3 robots is 89 %, while scalability to 6 robots is 79 %
(Fig. 10a); in physical experiments, scalability to 3 robots is 68 %, while scalability to 6
robots is 56 % (Fig. 10b).

The simulation accurately represents the efficiency of a single robot, but increasingly
overestimates swarm efficiency as swarm size increases: 1 simulated robot is 1.1 times more
efficient than 1 physical robot, while a simulated swarm of 3 robots is 1.4 times more efficient
than a physical swarm of 3, and a simulated swarm of 6 is 1.6 times more efficient than a
physical swarm of 6. We hypothesize that this increasing discrepancy is a result of inter-robot
interference in the real world that is not captured in the simulation.

Figure 11 shows how efficiency per robot changes as swarm size increases from 1 to
768 robots. As in Fig. 10, there is an increase in overall swarm efficiency, but a decrease
in per-robot efficiency, as swarm size scales up. The solid line in Fig. 11 shows how per-
robot foraging efficiency scales when robots forage on a power law distribution (without
sensor error) and robots are able to adapt behaviors to swarm size (slope on logged axes =
−0.17, R2 = 0.96, p < 0.001). The scalability (Eq. 7) for 768 robots using the full CPFA
is 27 %. We compare the efficiency of subsets of the full CPFA at different swarm sizes to
assess which behaviors contribute most to scalability.

The other three lines in Fig. 11 show how efficiency scales when swarms are prevented
from adapting the full CPFA to the environment in which they are evaluated. The dashed line
shows the efficiency of swarms that use a fixed set of parameters evolved for a swarm size
of 6 (i.e., parameters are evolved for a swarm size of 6, but evaluated in swarm sizes of 1 to
768). Comparing the solid line to the dashed line shows how adapting to swarm size improves
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Fig. 11 Foraging efficiency (resources collected per hour, per robot) in simulated swarms of 1–768 robots
foraging without sensor error. Data are shown on a log scale, and linear regression lines are shown for log-
transformed data. Per-robot efficiency is shown for four cases: using the full CPFA parameter set adapted to
swarm size (slope = −0.17, R2 = 0.96), using the full CPFA with parameters fixed to values evolved for a
swarm size of 6 (slope = −0.19, R2 = 0.83), using parameters adapted to swarm size without information
(i.e., the CPFA without memory and communication; slope = −0.14, R2 = 0.95), and using parameters fixed
to values evolved for a swarm size of 6 without information (slope = −0.21, R2 = 0.91). All linear fits are
statistically significant (p < 0.001)

efficiency. The difference in efficiency (Fig. 11, solid vs. dashed) increases as swarm size
increases. For example, adapting to a swarm size of 24 improves overall swarm efficiency
by 4. 0%, and adapting to a swarm size of 768 improves swarm efficiency by 51 %.

The dash-dotted line shows the efficiency of swarms that adapt to swarm size but are
unable to use information (site fidelity and pheromones are disabled so that CPFA parameters
λid, λsf , λlp, and λpd have no effect on robot behavior). By comparing the efficiency of swarms
with and without information (Fig. 11 solid vs. dash-dotted), we observe that adapting to use
information improves swarm efficiency by an average of 46 % across all swarm sizes.

Finally, the dotted line shows swarms that are restricted in both of the ways described
above: Information use is disabled, and parameters are fixed to those evolved for swarms
of size 6. By comparing the dash-dotted line to the dotted line, we can observe how the
GA evolves the remaining parameters that govern robot movement (pr, ps, and ω) in order
to adapt to swarm size. The GA is able to adapt movement to scale up more efficiently:
adapting movement parameters to a swarm size of 24 improves swarm efficiency by 6.8 %, and
adapting movement parameters to a swarm size of 768 improves swarm efficiency by 59 %.
Thus, parameters governing movement improve efficiency more than parameters governing
information use (59 vs. 46 %, respectively, for swarms of 768).

The scaling exponents are remarkably similar for swarms under the 4 conditions shown
in Fig. 11 (slopes ranging from −0.14 to −0.21): those that adapt to swarm size, those with
behaviors adapted only to a swarm of 6 robots, those that do not use individual memory or
pheromone communication, and those with behaviors adapted to a swarm of 6 robots that do
not use memory or communication. The cause of these similar exponents is unclear. Central-
place foraging produces diminishing returns as swarm size increases because the central nest
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Fig. 12 a Swarm size versus best evolved uninformed search variation (ω) (slope = −0.035, R2 = 0.94, p <

0.001) (see Fig. 14 in supplementary material for statistical distribution). b Swarm size versus best evolved
probability of laying pheromone when two resources are found in the resource neighborhood (Eq. 4: k ←
2, λ← λlp) (slope = −0.040, R2 = 0.84, p < 0.001) (see Fig. 14, supplementary material)

imposes a constraint on swarm efficiency—robots in larger swarms have to travel farther to
collect more resources. However, it is not obvious why that should lead to similar scaling
exponents for all four cases. Other researchers have focused on inter-robot interference as the
main cause of sub-linear scaling (Matarić 1992; Lerman and Galstyan 2002), but we observe
sub-linear scaling even without including collisions in the simulation.

Figure 12 shows two ways in which the GA evolves different strategies for different
swarm sizes. Both parameters are drawn from the single best strategy evolved for each
swarm size. Figure 12a shows that the variation in the uninformed random walk (ω) declines
with swarm size. Other movement parameters are also correlated with swarm size: Robots
in larger swarms use the straight motion of the travel behavior for a longer period of time
(i.e., ps decreases; see Fig. 13a in supplementary material), and they are less likely to give
up searching and return to the nest (i.e., pr decreases; see Fig. 13b, supplementary material).
These three trends result in robots in large swarms using more directed motion to disperse
farther to cover a larger area and reduce crowding.

Figure 12b shows how the GA evolves the probability of laying pheromone for different
swarm sizes. The probability of laying pheromone decreases with swarm size when two
resources are found in the local neighborhood of a found resource (Eq. 4: k ← 2, λ← λlp).
This decreasing trend is observed for all numbers of neighboring resources (this follows
from Eq. 4). Additionally, pheromone waypoints decay faster as swarm size increases (λpd)

(Fig. 13d, supplementary material). Small swarms may evolve to lay pheromones more
often because they deplete piles more slowly than larger swarms. The preference for less
pheromone laying and faster pheromone decay in larger swarms may be advantageous to
avoid the problem of overshoot in real ant foraging (Wilson 1962), where pheromones can
adversely affect foraging rates by recruiting ants to previously depleted food sources.

The two remaining parameters evolved by the GA, the rate of site fidelity (λsf ) and the
decay rate of the informed random walk (λid), show no significant correlation with swarm
size (Fig. 13f, g, supplementary material). Figure 14 (supplementary material) shows the
full distributions for the parameters of all 10 strategies evolved by the GA in simulation.
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We see the same trends in the median parameter values as we see in the best parameter
values in Fig. 13, but we also observe some outlier strategies that are substantially different
from the best performing strategies. For example, an asterisk in Fig. 14c corresponds with an
outlier strategy which performs at 37% of the efficiency of the best strategy. This particular
outlier evolved by converging on an unusually high rate of pheromone use coupled with
ineffective spatial dispersal. Such premature convergence on suboptimal strategies is common
in evolutionary computation, but because we repeat the evolutionary process multiple times
(see Sect. 3.2), we can evolve a rich variety of interactions among parameters and transfer
only the most effective parameter sets into physical robots.

5 Discussion

We have described a CPFA whose parameters are evolved by a GA to maximize foraging
performance under different experimental conditions. Experiments show that the system suc-
cessfully evolves parameters appropriate to a wide variety of conditions in simulation, and
these lead to successful foraging in iAnt robots. We show that foraging for heterogeneously
distributed resources requires more complex strategies than foraging for the randomly dis-
tributed resources that have been the focus of previous work. Strategies that automatically
tune memory and communication substantially increase performance: Fig. 8a shows that the
more complex strategy doubles foraging efficiency for clustered resources compared to a
simpler strategy evolved for randomly distributed resources. The same behaviors that allow
flexible foraging for different resource distributions can also adapt to tolerate real-world
sensing and navigation error (Fig. 6) and scale up to large swarm sizes (Fig. 11). This system
contributes to solving a key challenge in swarm robotics: It automatically selects individual
behaviors that result in desired collective swarm foraging performance under a variety of
conditions.

The error tolerance, flexibility, and scalability of this system arise from interactions among
the set of behaviors specified in the CPFA, and dependencies between those behaviors and
features of the environment. These interactions allow a small set of 7 parameters (Table 1) to
generate a rich diversity of foraging strategies, each tuned to a particular amount of sensing
and navigation error, a particular type of resource distribution, and a particular swarm size.
Post hoc analysis of evolved parameters reveals that pheromone-like communication is one
among many important components of the evolved strategies, and interactions among multiple
behaviors (i.e., memory, environmental sensing, and movement patterns) are important for
generating flexible strategies. Further, the relative importance of pheromone communication
varies with sensing and navigation error, resource distribution, and swarm size.

Several examples illustrate how the parameters are automatically adapted to features of
specific foraging problems. The power-law-distributed resources are placed in a range of pile
sizes, so effective strategies balance the use of random exploration to find scattered resources,
individual memory to collect resources from small piles, and recruitment to collect resources
from large piles. This balance is altered when the simulations include real-world sensing and
navigation error. When error is included, the power law strategy uses less pheromone laying
and less site fidelity (Fig. 9a, b vs. Fig. 9c, d, light gray bars); thus, search automatically
becomes more random when information is less reliable due to error. In contrast, the cluster-
adapted strategy uses more pheromone communication when robots have error: pheromones
are laid more often and evaporate more slowly (Fig. 7), and robots reduce rates of site fidelity
in order to follow pheromones more (Fig. 9a vs. Fig. 9c, white bars). Sensing and navigation
errors have the least effect on foraging performance when resources are distributed at random
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(Fig. 5), and random-adapted strategies are unaffected by error (Fig. 9, dark gray bars) because
those strategies do not evolve to use information.

Thus, introducing more complex resource distributions reveals effects of sensing and
navigation error that are not apparent in simpler foraging problems. Understanding how
error affects foraging for heterogeneously distributed resources, and having an automated
way to adapt to those effects, are both important given that landscapes in the real world have
complex resource distributions (Turner 1989; Wiens et al. 1993) and that robots in the real
world have error. Additionally, real-world scenarios will have variable numbers of robots to
achieve different tasks. We demonstrate that systematic changes in behaviors are adaptive in
larger swarms. We find that power-law-adapted robots in larger swarms evolve to disperse
more (Fig. 12a) and communicate less (Fig. 12b) and that parameters governing movement
have a greater effect on scaling performance than parameters governing communication (59
vs. 46 % improvement). Thus, the same parameters that adapt to improve performance for
different distributions and error cases can also be automatically tuned to improve performance
for variable swarm sizes.

Our approach differs from prior work in that we focus on finding combinations of indi-
vidual behaviors that result in collective foraging success. We make no attempt to evolve
low-level controllers, nor do we attempt to evolve new ways to remember, communicate,
or move. We focus the GA on identifying combinations of parameters governing individ-
ual behaviors that maximize collective performance. This mirrors the natural evolutionary
process that has shaped the successful foraging strategies of different ant species by tuning
and combining a common set of existing behaviors. The results show significant performance
improvements when parameters are evaluated in the same context in which they are evolved.
The success of the evolved foraging strategies demonstrates that this approach is a practical
method to generate effective foraging strategies from interactions between foraging behaviors
and the specified foraging environment.

Experiments with this swarm robotics system can also test existing biological hypotheses
and generate new ones, a potentially important role for robotics as suggested by Webb (2008)
and Garnier (2011). For example, the balance between communication and memory may shift
in ants in response to resource distribution. This could be tested by comparing the typical
distribution of resources foraged for by species that rarely use pheromones (e.g., Gordon
1983, 2002) to the distribution foraged for by species that use pheromones ubiquitously
(e.g., Aron et al. 1989). Our finding that individual robots in small swarms are more likely to
lay pheromones than those in large swarms (Fig. 12b) conflicts with the hypothesis by Beckers
et al. (1989) that communication increases with colony size. One potential explanation is that
large colonies tend to forage for more clustered distributions, a factor not accounted for in our
simulations in which all swarms foraged on a power law distribution. Thus, the relationship
between colony size and pheromones may be driven by environmental differences in the
niches of large and small colonies. How communication among individuals depends on
colony size and resource distribution is worthy of further study in real ants, as well as in swarm
robotics. More generally, our system provides a way to test how memory, communication,
and movement interact in different foraging conditions with experimental control that is not
possible with ants in natural environments.

6 Conclusions

This paper presents an ant-inspired swarm robotics system whose parameters are specified
by a GA. The GA automatically selects individual behaviors that result in desired collective
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swarm foraging performance under a variety of conditions. This work emphasizes the impor-
tance of incorporating environmental conditions into the design process at the outset, rather
than assuming idealized conditions and adapting them to environmental realities afterwards.
It is the interactions with features of the specified foraging problem during the evolution-
ary process that generate complex and flexible behaviors. Foraging strategies emerge from
the interactions among rules and dependencies in the foraging environment, including the
amount of error in robot sensing and navigation, the complexity of the resource distribution,
and the size of the swarm.

Our work demonstrates one approach toward the common goal of developing robot swarms
that can function in the varied and complex conditions of the real world. Of course, real envi-
ronments are vastly more complex than the conditions we have considered here. Future
work should test whether and how a GA can adapt the CPFA to more complex environ-
ments, additional sources of robot error, and larger physical robot swarms. This work also
provides a foundation for automatically evolving behaviors that interact with environmental
conditions to accomplish other collective tasks, for incorporating other ant behaviors, and
for adapting behavioral rules in response to sensed environmental conditions in real time.
By demonstrating how a rich set of strategies can evolve from simple behaviors interacting
with complex environments, we suggest that biologically inspired swarm robotics can ben-
efit from leveraging a larger set of biological behaviors to accomplish complex real-world
tasks.
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