
This paper will appear at IEEE INFOCOM 2015, and is copyrighted by IEEE.

Original SYN: Finding Machines Hidden Behind
Firewalls

Xu Zhang
Department of Computer Science

University of New Mexico
xuzhang@cs.unm.edu

Jeffrey Knockel
Department of Computer Science

University of New Mexico
jeffk@cs.unm.edu

Jedidiah R. Crandall
Department of Computer Science

University of New Mexico
crandall@cs.unm.edu

Abstract—We present an Internet measurement technique for
finding machines that are hidden behind firewalls. That is, if
a firewall prevents outside IP addresses from sending packets
to an internal protected machine that is only accessible on
the local network, our technique can still find the machine.
We employ a novel TCP/IP side channel technique to achieve
this. The technique uses side channels in “zombie” machines
to learn information about the network from the perspective of
a zombie. Unlike previous TCP/IP side channel techniques, our
technique does not require a high packet rate and does not cause
denial-of-service. We also make no assumptions about globally
incrementing IPIDs, as do idle scans.

This paper addresses two key questions about our technique:
how many machines are there on the Internet that are hidden
behind firewalls, and how common is ingress filtering that
prevents our scan by not allowing spoofed IP packets into the
network. We answer both of these questions, respectively, by
finding 1,296 hidden machines and measuring that only 23.9%
of our candidate zombie machines are on networks that perform
ingress filtering.

I. INTRODUCTION

With the advent of Software Defined Networking and
increasing concerns about cybersecurity and the ability to
enforce policies on networks connected to the Internet, it is
becoming increasingly difficult to understand the structure of
networks. Networks are no longer defined by routing alone,
but also by trust relationships, firewall rules, and policies. In
this paper we propose a method for finding hidden machines
behind firewalls, a critical first step towards being able to
measure modern networks.

An idle scan is a port scanning technique that exploits
TCP/IP side channels. Antirez [1] proposed the original idle
scan method in 1998. By implementing Antirez’s idle scan, a
scanner can scan a target machine without sending a single
packet to the target using his or her own return IP address.
The scan selects a “zombie” machine which has a global
IP identifier (IPID), which is a unique identifier for each IP
packet. A Global IPID means that the IPID associated with
every packet sent by the machine shares the same global
counter. There are basically three steps for the idle scan:

1) The measurement machine queries the IPID of the
zombie.

2) The measurement machine sends a SYN packet to a port
of the target using the zombie’s IP address.

3) The measurement machine queries the IPID of the
zombie again.

By measuring the changes in the IPID between the first and
last query, the status of the port (either open or closed) on the
target is known. This is because the open port case causes the
zombie to send packets and increment its IPID (responding
to unsolicited SYN-ACKs with RSTs), while the closed port
case does not. However, Antirez’s idle scan method requires
the zombie machine to have a global IPID, which is relatively
rare. The scan also assumes that the zombie is idle, hence the
name “idle scan.” Internet-connected hosts are seldom idle.

In 2010, Ensafi et al. [2] proposed a different TCP/IP side
channel based on information flow in the TCP/IP SYN back-
log. Ensafi et al.’s technique’s main advantage over Antirez’s
idle scan was that the measurement machine does not need
to send any packets at all (not even spoofed packets) to the
target. Hence, if a firewall prevents the attacker from reaching
the target at all the attacker can still infer the existence
of the machine. However, Ensafi et al.’s technique cannot
be used ethically for Internet measurements because it fills
the SYN backlog of the zombie, causing the possibility of
denial-of-service. The SYN backlog is a buffer that stores
information about half-open connections where a SYN has
been received and a SYN-ACK sent but the ACK reply to
the SYN-ACK has not been received. Ensafi et al.’s technique
fills this backlog with spoofed SYNs (that have the return IP
address of the target) and SYNs with the return IP address
of the measurement machine, and infers whether the target
is responding to the zombie’s SYN-ACKs with RSTs based
on whether the SYNs from their machine are responded to
with SYN cookies. SYN cookies [3], [4] are a type of SYN-
ACK that require no state to be kept and are only ever
transmitted once. They are used when the SYN backlog is
full to mitigate SYN flooding denial-of-service attacks. Most
SYN cookie implementations do not allow for a scaled flow
control window, and filling the SYN backlog requires a high
rate of SYN packets to be sent, thus Ensafi et al.’s technique
cannot be used ethically for Internet measurement purposes.

In this paper, we present an Internet measurement technique
for finding machines that are hidden behind firewalls. That is,
if a firewall prevents outside IP addresses from sending packets
to an internal protected machine that is only accessible on the
local network, our technique can still find the machine. Our

technique is based on the technique of Ensafi et al., but does
not require the SYN backlog to be filled to infer information,
and SYNs are sent at a very low rate.

We summarize our major contributions as follows:

1) We present a novel scan that uses a TCP/IP side channel
to find hidden machines behind firewalls without causing
denial-of-service. Our method also does not require a
global IPID on the zombie machine, nor does it assume
that the measurement machine can send packets to
the target. We demonstrate our scan’s effectiveness by
discovering 1,296 hidden machines.

2) We propose a comprehensive direct host discovery scan
which is comprised of five scans: SYN scan, SYN-ACK
scan, UDP scan, ICMP scan, and ICMP fragmentation
scan. The new scan we implemented was used to com-
pare with our SYN backlog scan, meanwhile it could
find more hosts up than the Nmap host discovery scan.

3) We present a novel method for testing whether the
network that a machine is on performs ingress filtering
to prevent spoofed IP packets from entering the network
with return IP addresses within the network. Using this
method, we determined that only 23.9% of networks
we attempted to measure perform this kind of filtering,
meaning that our novel TCP/IP side channel scan is
widely applicable.

The rest of the paper is organized as follows. Section II gives
some background information that is necessary for understand-
ing our scan. Section III describes the implementation of our
technique. We then describe our experimental methodology for
assessing the effectiveness and applicability of our technique
in Section IV, and how we perform quantitative analysis
of the raw results in Section V. Results are presented in
Section VI, followed by discussion in Section VII, related
works in Section VIII and the conclusion in Section IX.

II. BACKGROUND

In this section, we briefly review TCP basics and give
some background information about different port scanning
techniques which we use in this paper.

A. TCP basics

There are some rules that TCP follows [5], which are
exploited by our scan:

1) A SYN packet sent to an open port will be accepted and
replied to with a SYN-ACK.

2) A SYN packet sent to a closed port will be dropped,
and a RST-ACK will be sent back.

3) A FIN packet sent to an open port will be dropped.
4) A FIN packet sent to a closed port will be answered a

RST.
5) A SYN-ACK packet will be dropped by a machine if

that machine did not send the original SYN, and a RST
response will be sent back.

B. Port scan methods
Various methods can be used to implement port scanning.

Generally, port scanning techniques can be classified into two
types: vertical scans and horizontal scans. The former means
scanning some or all ports on a single host, the latter means
scanning a specific type of service in a range of IP addresses.
In this section, we will discuss the most popular scans. Some
of the definitions are from De Vivo et al. [5] and Lyon [6].

1) TCP SYN scan: In a TCP SYN scan [5], the scanner
sends SYN packets to a certain port of the target machine. If
the target machine replies with a SYN-ACK, it means that port
is open. If the scanner receives a RST response, this means
the port is closed. In this way, the scanner can learn the status
of a given port. The advantage of this scan is that it does
not need to establish a full TCP connection. Because of this
feature of SYN scanning, it is also called half-open scanning.
The disadvantage is the scanner has to use its own return IP
address and has to be able to send a packet to the target, which
might be prevented by a firewall.

2) SYN-ACK scan: In the TCP SYN-ACK scan [6], the
scanner sends SYN-ACK packets to the target machine. If
the target machine replies with RSTs, that means the target
machine is up. This scan is often used to detect firewalls.

3) FIN scan: The FIN scan [5] is rarely logged (e.g., by an
intrusion detection system) compared to the original SYN scan
because it does not consist of a normal TCP 3-way handshake.
As mentioned above, a FIN packet arriving at a closed port
will get a RST back; if a FIN packet arrives at an open port,
it is dropped.

4) Xmas Tree, Null scan: Xmas Tree and Null scanning [5]
are variations of FIN scanning. The same behavior that FIN
scanning observes can also be seen with all FIN/PSH/URG
flags enabled (Xmas Tree scan) in a TCP segment or no
flags turned on (Null scanning). Certain firewalls focus on
preventing FIN scanning but are susceptible to these two kinds
of scans.

5) UDP scan and ICMP scan: The UDP scan [6] is a very
different scanning method used to detect UDP open ports. It
uses the fact that when a UDP packet arrives at a closed
port, an ICMP unreachable message will be sent back. An
ICMP scan [6] is implemented by sending an ICMP echo or
timestamp request and waiting for the ICMP reply packet.

6) Fragment scan: In this paper, we introduce a scan called
a Fragment scan. Hosts typically store fragments in a data
structure called a fragment cache so that a fragment’s datagram
can be reassembled after the rest of its fragments arrive.
Fragment scanning utilizes the notion that many hosts will
send ICMP “reassembly time exceeded” messages when they
evict entries from their fragment cache. To perform the scan,
we send an IP address the first fragment of a large ICMP
echo request. We then wait up to 120 seconds for it to expire
from a host’s fragment cache and to receive an ICMP error
message. We found that, although the Windows Firewall filters
the previously mentioned scan techniques, on Windows Vista
and later, the default firewall settings still permit “reassembly
time exceeded” messages to be sent unfiltered. Thus, this scan

is useful for detecting Windows machines even if they are
running the Windows Firewall.

III. IMPLEMENTATION

In this section, we describe the implementations of our
indirect and direct scans.

A. Our backlog scan

In this subsection, we present the details of our SYN
backlog scan in three parts: First we give a brief description
about the SYN backlog and how it is implemented in Linux,
in particular how it behaves as the number of half open
connections increase. Then we explain what we do to infer the
SYN backlog size of a Linux machine. Finally, we give the
details of our SYN backlog scan based on the understanding
of the previous two parts.

1) SYN backlog preliminaries: Our scan relies on a TCP/IP
side channel in the SYN backlog to make inferences. The
SYN backlog is a buffer to store half open connections. The
status when a machine receives a SYN and answers with a
SYN-ACK, but has not received an ACK reply to its SYN-
ACK to finish the “TCP three way handshake”, is called “half
open”. A half-open connection stays in the SYN backlog until
it receives an ACK to complete the normal handshake process
or a RST, ICMP error, or ARP timeout to drop the connection.
If no answer comes back, the SYN-ACK is retransmitted some
fixed number of times (typically between 3 and 5 times) until
the half-open connection times out (typically between 30 and
180 seconds) and is then aborted.

In the Linux kernel versions 2.3 and later, if the SYN
backlog is more than half full, some of the older entries in the
backlog will be evicted to reserve half of the backlog for the
young requests. A young request is a request that has not been
retransmitted yet. The idea of SYN backlog management is to
“keep most of the young entries and remove old ones from the
queue which have been there for quite some time and have not
yet been accepted or acknowledged” [7]. This feature causes
information flow before the resource is exhausted, so that we
can make inferences without causing denial-of-service.

2) Inferring SYN backlog size: The first inference we make
based on information flow in Linux is about the backlog size
of a Linux machine. Below we will talk about how to calculate
the possible SYN backlog size of a Linux machine. Then we
will give a method to infer the SYN backlog size based on
the range obtained from the previous calculation.

The Linux SYN backlog size depends on three kernel
variables:

1) The “backlog” argument of the listen() system call
2) The kernel variable net.core.somaxconn
3) The kernel variable net.ipv4.tcp max syn backlog
To calculate the backlog size, the kernel takes the first

variable (an argument passed to the listen() call), adds 1 and
then picks the next power of two, which is the final backlog
size. The lower bound of this variable is hard coded to 8 in
the kernel, and the upper bound depends on the minimum
value of the second and third variables. Although Linux sets

tcp max syn backlog based on the memory of the system
(minimum is 128), the default value of somaxconn is 128.
Thus, the typical range for the SYN backlog size of a Linux
system is 16 to 256.

To implement our inference technique to find out the
backlog size of a given machine on the Internet, we make the
assumption that “the SYN backlog size of the machine is x”
and iteratively increase x. We start from the smallest possible
size (16) and work up from there, to be non-intrusive. We
send 3/4 · x SYN packets, without answering ACKs to SYN-
ACKs from the machine. If the machine’s backlog size is x,
more than half of it is full and some of SYNs we sent will
be evicted. If the backlog size is greater than x, no eviction
behavior will be observed, so the guessed size of the backlog
is doubled to 2x and we repeat the test. The experiment is
run until it successfully returns the backlog size of the Linux
machine or it reaches the threshold 256 (typically the largest
size of the backlog). If the backlog size appears to be greater
than 256, we abort and do not use that machine as a zombie.

Below we explain a method to test whether an entry stayed
in the SYN backlog or not. For every original SYN packet that
we send, we create another duplicated SYN. The duplicated
SYN has the exact same information (source and destination
port, source and destination IP address) corresponding to the
original SYN, except it has a different sequence number that
is less by one. For Linux, the duplicated SYN we send may
have two kinds of answers:

1) If the original SYN still stays in the SYN backlog, an
ACK packet will be answered to it.

2) If the original SYN has been evicted, an SYN-ACK
packet will be answered to the newly arrived duplicated
SYN.

Therefore we can find out the status of previously sent SYN
packets by observing the machine’s answers to duplicated
SYN packets.

3) Implementing the backlog scan: Now we talk about how
to exploit the SYN backlog side channel and use it to find
hidden machines on the Internet.

Our backlog scan also involves a third machine called a
“zombie”. The procedure of our scan is as follows. We assume
that we have already performed the scan from the previous
subsection and we therefore know the zombie’s backlog size
s. We then fill 3/4 of the zombie’s backlog again. However,
this time the packets contain two parts: 1. Spoofed SYN
packets sent to the zombie which use the target machine’s
IP address as the source IP address. 2. SYN packets from
our scan machine to the zombie, using the return IP address
of the scan machine, and we call these packets canaries.
Spoofed SYN packets and canaries are mixed and shuffled
to be sent in a completely random order, and then sent at a
rate of 5 packets per second to the zombie machine. Three
quarters of the zombie’s SYN backlog are now filled by an
even number of spoofed SYNs and canaries, so each of them
has a number of packets equal to 3/8 of the zombie’s SYN
backlog size. In order to ensure that the Linux kernel evicts
SYNs independently and without treating canaries and probes

 sp

oofed SYNs a
nd ca

narie
s

A

 probes

Z

T

SYN-ACKs for spoofed SYNsRSTs

ACKs fo
r c

anarie
s

Case 2: Target machine exists

 sp

oofed SYNs a
nd ca

narie
s

A

 probes

Z
SYN-ACKs for spoofed SYNs

 SAs fo
r p

robes

Case 1: Target machine does not exist

Fig. 1. Two cases in our scan.

differently, we use random (without replacement) source port
numbers for all SYN packets created.

Next we send duplicates of the canaries to test their status
in the backlog. We call these duplicates probes. As discussed
above, probes are the exact same as canaries, except the
sequence number of each corresponding packet is smaller by
1. Two kinds of answers may come back, as shown in Figure 1:

1) If the target machine does not exist, the SYN backlog is
filled with spoofed SYN packets and canaries. Some of
the canaries will be evicted. We will therefore observe
SYN-ACKs as answers to probes.

2) If the target machine exists, it sends RSTs to SYN-ACKs
from the zombie. The SYN backlog is less than half full
because only the canaries stay. We will therefore observe
ACKs as answers to canaries.

Two special cases may affect the result of our technique
when the target machine does not exist.

1) Tested target is in the same subnet with the zombie: In
this case the zombie will send an ARP request to the
target. Spoofed SYNs will be removed from zombie’s
SYN backlog because of the ARP request timeout. Thus
the SYN backlog will be less than half full. However,
with Linux versions 3.2 and earlier, this behavior is rate-
limited to 1 per second. With this rate limitation, our
scan can still fill more than half of the backlog at a rate
of 5 packets per second when using these zombies with
SYN backlog sizes of at least 256.

2) Tested target is not in the same subnet with the zombie:
Some gateway routers may send ICMP host unreachable
messages back to the zombie. The SYN backlog of the
zombie will thus be less than half full. There is typically
a rate-limit for sending this type of ICMP message of 1
per second.

B. Nmap direct scan

We implemented Nmap’s host discovery scan [8] via “nmap
-n -sn”. These options let Nmap run its built-in host discovery
scan without resolving DNS. We execute this command using
a privileged account on the measurement machine. By default,
nmap sends an ICMP echo request, an ICMP timestamp
request, a TCP SYN to port 443, and a TCP ACK to port
80 on each machine.

C. Our own direct scan

We also implemented a new comprehensive direct scan. This
scan is a hybrid scan to test the liveness of an IP address. It is
comprised of six types of scans: TCP SYN Scan, TCP SYN-
ACK Scan, UDP Scan, ICMP Echo Scan, ICMP Timestamp
Scan, and Fragment Scan. In the TCP SYN Scan and SYN-
ACK Scan, we target more ports (21, 22, 80, 135, 139, 443,
445, 631) than Nmap’s host discovery scan. In the UDP Scan,
we choose the probably unused port 5000 and wait for an
ICMP Port unreachable error. In the Fragment Scan, we send
only the first fragment of an ICMP Echo request and then
wait for the reassembly timeout ICMP error message as a
response. This is effective for windows machines because
some Windows versions have a firewall that blocks SYNs but
still allows the reassembly timeout message to pass.

D. Ingress filtering

Many zombies are on networks subject to ingress filtering,
i.e., they are on networks that filter incoming packets from
outside their network if those packets have a source address
from inside their network. Since our scanning technique relies
on spoofing packets from other hosts on the zombie’s network,
if the zombie’s network performs ingress filtering, our scan
will not work and will spuriously report all hosts on the
zombie’s network as alive.

To test if a zombie’s network performs ingress filtering,
we use the zombie’s fragment cache as a side channel to
determine if packets spoofed from other hosts on the zombie’s
network are reaching the zombie. Since our zombies are
all Linux machines, we adapt our test to Linux’s fragment
cache implementation. Namely, we use the time it takes to
fill Linux’s fragment cache to determine if there is ingress
filtering.

Linux limits the size of the fragment cache according to the
number of bytes used for storing fragments. When the cache
is full and the storage of an incoming fragment would exceed
its maximum size, the kernel begins pruning fragments from
its cache in FIFO order, typically until 1/4 of the cache is
free, although this number is configurable.

Our test begins by performing a fragment cache size mea-
surement by measuring the maximum number of 1420-byte
fragments that fit into the target Linux machine’s fragment
cache. We will call this number the size of the fragment cache.
We perform this measurement by sending large TCP SYN
datagrams to the open port of the zombie that we fragment
into two halves. As Linux ignores extraneous TCP payloads
in SYN datagrams, once these datagrams are completed in the

zombie’s fragment cache, the zombie will respond with the
appropriate SYN-ACK.

One might naively measure the number of fragments the
Linux fragment cache can hold by splitting each datagram
di of n datagrams d1, . . . , dn into two fragments, a first-half
fragment fi and a second-half fragment si, and then sending
f1, . . . , fn followed by sn, . . . , s1, for some n larger than
the fragment cache size. To avoid quickly kicking out any
fragments that might be in the zombie’s fragment cache, we
might send these packets out evenly over an up to 30 second
interval, as after 30 seconds, Linux times out fragment cache
entries, evicting them. However, the number of SYN-ACKs
received from this method would not be the size of the cache.
Rather, it would be the number of fragments remaining in the
cache after the kernel prunes its entries.

Thus, instead we, over the span of 29 seconds, send frag-
ments from 2n different datagrams and in a different order
than before. We send f1 and f2, then s1, followed by f3 and
f4, then s2, and so on, until we have sent all of f1, . . . , f2n
and s1, . . . , sn. Thus, we take turns between placing two new
datagram entries in the fragment cache and attempting to
complete the oldest datagram we have not tried completing
by sending its missing second-half fragment. When the kernel
prunes its fragment cache for the first time, any future second-
half fragments will only try to complete fragments that were
already evicted, and so we will cease receiving any more SYN-
ACKs from the host. At this moment, the number of entries
that were in the fragment cache will equal the number of SYN-
ACKs that we have received.

To then measure if fragments spoofed from some address
are reaching the zombie, we perform a modified version of
the fragment cache size measurement we call the spoofed size
measurement. This measurement is similar to the fragment
cache size one, except every time we send either a first-half
or second-half fragment from us, we also send an analogous
one from the spoofed host. If our spoofed packets from that
host are reaching the zombie, then the fragment cache will fill
twice as quickly, and we will measure the fragment cache to
be half of its size.

To test if the network filters a certain address, we perform a
filtering test. In a filtering test, we alternatively perform both
the fragment cache size and spoofed size measurements 10
times. Let x̄ be the average result of the fragment cache size
measurements and ȳ be the average result of the spoofed size
measurements. If ȳ < 0.55x̄, then we conclude that incoming
packets from the spoofed address are filtered. If ȳ > 0.95x̄,
then we conclude that they are not. Otherwise, we consider
the result inconclusive.

To decide if there is ingress filtering on a zombie’s network,
if the zombie’s address is a.b.c.d, we perform the filtering test
to determine if a.b.c.(d ⊕ 0x01) and a.b.c.(d ⊕ 0x80) are
filtered on the zombie’s network. These two tests effectively
test whether the zombie is on a subnet of size /31 or larger
that performs ingress filtering and whether the zombie is on
a subnet of size /24 or larger that performs ingress filtering,
respectively.

Thus far, we have assumed that we know some appropriate
value of n to use larger than the fragment cache size. Although
we could use some very large value of n surely larger
than any fragment cache size, if n is too large, we will be
sending packets and filling the zombie’s fragment cache at an
unnecessarily high rate. Thus, to find an appropriate value of
n, we first perform a fragment cache size measurement with
n = 11, and we continue doubling n until we find an n such
that the measured fragment cache size is less than 9n/10, and
then we use that value of n for all future measurements on
that zombie.

IV. EXPERIMENTAL SETUP

All of the measurement machines we used were Linux
machines running Ubuntu 14.04. To avoid the influence of
ARP timeouts as discussed in Section III, we chose Linux
machines with kernel version 3.2 and earlier as zombies. In
this section we describe how we selected zombies and ran
experiments. The two main purposes of our experiments were:

1) Demonstrate the efficacy of our technique by locating
hidden machines, i.e., machines that a very comprehen-
sive direct scan cannot find.

2) Determine how common ingress filtering is, to assess
the applicability of our technique.

One measurement machine was used to generate random IP
addresses. We sent SYNs to ports 21, 22, 80, 443, and 631 of
each randomly generated IP and sniffed for the response for
3 seconds. IP addresses which responded with SYN-ACKs
were recorded. Then we took the IP addresses collected in the
first step as input and removed duplicates. We ran “nmap -
O” (Nmap Operating System Detection) [9] with a timeout
of 60 seconds to all these IP addresses. Basically, Nmap
sends TCP and UDP packets and tests TCP Initial Sequence
Number (ISN) sampling, TCP option support and ordering,
IPID sampling, initial window size check, etc., and then
compares the results with its own operating system database to
see if there is a match. IP addresses determined to be running
the Linux operating system were recorded. Some answers
returned by Nmap were not accurate, so we discarded those
answers and only recorded answers with 100% certainty from
Nmap that the machine was a Linux machine. We wanted to
find Linux machines with versions earlier than 3.3. We found
that Linux version 3.0 and earlier has its TCP timeout period
(the amount of time it takes for a SYN to time out and be
removed from the SYN backlog) hardcoded to 3 times longer
than version 3.1 and later. We used this feature to fingerprint
Linux machines with kernel version 3.0 and earlier (thus
ensuring they were older than 3.3) by testing TCP timeout
periods. After collecting all the Linux zombie candidates, we
tested their SYN backlog sizes using the method described in
Section III.

For each zombie machine we chose, the machines in the
same /24 subnet were considered target machines for us to
try to discover the liveness of with both direct and indirect
scans. Before scanning, we queried reverse DNS entries and
looked up all the domain names for all target machines. Then

we ran our SYN backlog scan, the Nmap host discovery scan,
and our comprehensive direct scan on every target machine.
We re-ran the SYN backlog indirect scan three times for
each experiment to minimize the effects of bursty packet loss.
After finishing testing all machines in same /24 subnet with a
zombie, we ran the ingress filtering test on that zombie. The
scans ran on six measurement machines using multiprocessing.
The whole scan period was about 15 days in length. In
Section III we discussed two possible cases that may affect
our scan. To ensure that there are enough SYN’s in zombie’s
backlog to withstand those removed via linux’s arp timeout
behavior and any possibly removed via rate-limited ICMP host
unreachable errors, we selected our final data from zombies
with a minimum backlog size of 256.

V. ANALYSIS

We use statistical hypothesis testing to determine whether a
target address is alive on the zombie’s network, using as our
null hypothesis and our alternative hypothesis

H0 : the address was never alive during our test
Ha : a machine at that address reset some SYN-ACKs.

If we are able to reject the null hypothesis and accept the
alternate hypothesis with high statistical significance, then we
can safely assume that the target machine is up, i.e., alive.

We send both spoofed SYNs and canaries to fill 3/4 of the
SYN backlog of a zombie machine. When the null hypothesis
is true, then no machine answers at the target address with any
RST in response to any of the zombie’s SYN-ACKs. The SYN
backlog is more than half full and some old entries are evicted
because half of the SYN backlog is reserved for young entries.
When the null hypothesis is false, then that address is alive
and, in an ideal case, its machine responds to every one of the
zombie’s SYN-ACKs with RSTs and our experiment would
show no evicted old entries. However, in practice, machines
may not be consistently up and there is the possibility of
packet loss in all directions of links and machines. Moreover,
sometimes packet loss changes the number of evicted canaries
that we measure. It might be obvious to say a machine is up
when our evicted number is, for example, 0. But for numbers
such as 4 or 5, it may not be clear how to decide whether we
can assume that the machine is up, which is why we apply
a hypothesis test. We need to calculate the point at which
we can consider the machine to be up, which is the critical
number, c. Meanwhile, we also need to decide how critical
we will be, i.e., how much statistical significance we will
require to assume that the machine is up. For example, in this
case, c = 0 is more critical than c = 5. In other words, the
decision we make on c determines how often we would falsely
reject the null hypothesis (Type 1 error). In our experiment, we
selected the maximum acceptable probability of Type 1 error
(also called the significance level) α = 0.05. We calculate
critical value c depending on this significance level.

As discussed above, if we assume that the null hypothesis is
true, some entries in the SYN backlog will be evicted because
more than half of it is full. Whether a specific entry is evicted

or not is based on the location it is hashed to in the SYN
backlog hash table. The spoofed SYN packets and canaries we
created have random source port numbers; therefore, the whole
process of evicting packets can be simulated by randomly
selecting entries from all SYN packets in the SYN backlog.
The evicting process stops after the number of entries in the
SYN backlog drops under half. By sending probes, we can
know how many canaries are evicted.

When n draws are taken, without replacement, from a finite
population size of N that contains exactly K successes and
where each draw is either a success or a failure, the probability
of k successes has a hypergeometric probability distribution.
Thus, the number of evicted canaries is hypergeometrically
distributed. More specifically, the number of evicted canaries
k (the test statistic) follows a hypergeometric distribution. If
we define s to be the zombie machine’s SYN backlog size,
then the number of successes statistic K in the population
is simply the number of canaries that arrived at the zombie
machine,

K = C − LC = 3/8 · s− LC ,

where C is number of canaries we sent and LC is the number
of these canaries that were lost due to packet loss.

The population size N is all of the spoofed SYNs and
canaries that arrived at zombie machine. In this case, we
cannot observe the number of packets lost for spoofed SYNs
LS , because answers to spoofed SYNs are off-path. We
estimate that LS = LC because spoofed SYNs and canaries
are sending aggregately in the same time period and because
in our experiment C = S, where S is the number of spoofed
SYNs we sent. So for our population size, we have

N = (C − LC) + (S − LS) = 2 · (C − LC) = 2 ·K.

The number of draws n is how many entries are evicted.
As we discussed above, the evicting process stops when the
total number of entries in the backlog drops under half, and it
does not necessarily stop when it reaches exactly half the size
of the SYN backlog. In other words, it might drop even more
SYNs after it reaches the half-full threshold. And so we have

n ≥ N − 1/2 · s.

The number of successes k is simply the number of evicted
entries that we observed for canaries. We measure the packet
loss of evicted canaries by counting answers to probes. If the
number of probes answered is fewer than the number of probes
we sent, then there is packet loss. There are two types of
answers: ACKs for canaries (meaning that the canary stayed
in the SYN backlog) and SYN-ACKs for probes (meaning
that the canary was evicted). Packet loss could occur in the
probes we sent or in the two types of answers we get. Without
making guesses about where exactly the packet loss happened,
we want to be conservative and bias the result to H0. That is to
say, we assume that the answers that get lost are always SYN-
ACKs for probes. This way we count more evicted canaries,
which makes it harder to reject H0. This can only make the

result more statistically significant. So we calculate k as

k = R−A,

where R is the number of probes sent and A is the number
of ACKs received from our probes.

Here the p-value, or probability of seeing data at least as
extreme as what we measured, is simply P (x ≤ k). Since k
is geometrically distributed, our p-value is

P (x ≤ k) =

k∑
x=1

(
K
x

)(
N−K
n−x

)(
N
n

) .

We chose the possible smallest value of n, which is n =
N − 1/2 · s, because we want to be conservative about H0,
and a smaller n results in a bigger P value, which makes it
harder to reject H0.

As we discussed in section IV, each experiment is repeated
3 times to avoid the influence of packet loss. When selecting
the results, there are two cases:

1) At least one of the three results does not have packet
loss in the traffic we can observe.

2) All the three results have packet loss in the traffic we
can observe.

For case 1, we would select one result that is without
packet loss. If there is more than one result which does
not have packet loss, we chose the result with the highest
evicted number of canaries k, to remain conservative and bias
us towards H0. For case 2, we would select the one result
which has the smallest packet loss rate, so as to minimize the
influence of packet loss. If the one we select still has a high
packet loss rate, (greater than 30% in this case, because it
would cause population of less than half of the SYN backlog
size) we throw out the data and return a failure error message
for this target machine.

In Section III, we discussed two cases that may affect our
scan. To give allowance of our model to handle these cases,
we adjusted certain variables in our model. The zombie’s SYN
backlog size is always 256 for the results presented in this
paper. At a rate 5 packets per second, our experiment takes
less than 40 seconds to fill 3/4 of backlog. Assuming the target
does not exist, the maximum number of evicted SYNs due to
ARP request timeouts or ICMP unreachable messages is 40.
Therefore, we subtracted both the number of successes statistic
K and number of draws n by 40, respectively.

VI. RESULTS

In this section we describe the results of our experiments.

A. Ingress filtering results

We were able to collect data from 289 zombie machines
with backlog size 256 during a 15 day experiment. We scanned
machines in the same /24 subnet for each zombie. After
collecting the scan results, we performed the ingress filtering
test on each zombie machine. We found that 69 (23.9%) of
the zombies had ingress filtering. Among them, 55 (79.7%)
had ingress filtering on a /24 or larger network; 14 (20.3%)

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

Subnets

N
u

m
b

e
r

o
f

H
id

d
e

n
 M

a
c
h

in
e

s
 f

o
u

n
d

Fig. 2. Distribution of the number of hidden machines per subnet.

experienced ingress filtering on a /31 or larger network (e.g.,
/27) but not on a /24 or larger network. Their backlog scan
results for the /24 showed almost no evicted canaries in some
smaller subnet. 176 (60.9%) of the zombies did not have
ingress filtering on a /24 or larger network, and 44 (15.2%) of
the zombies’ ingress filtering status could not be determined.
The results show that since most (60.9%) of zombie machines
we selected do not have ingress filtering on their network, our
technique is widely applicable on the Internet.

B. Indirect scan result

For the 176 zombies we found that did not experience
ingress filtering, we applied statistical analysis to the results
and calculated a p-value for each individual experiment. There
are 14,503 addresses for which we rejected the null hypothesis,
which means that these addresses were alive. Comparing to our
direct scan, we found 1,351 more machines that were hidden to
direct scans. Finally, we removed hidden machines if there are
ICMP unreachable error message collected by our direct scan.
The number of hidden machines we found is 1,296, distributed
across 84 different subnets out of the 176 tested. Figure 2
shows the distribution of those 1,296 machines in terms of
how many such machines existed on each subnet. The x axis
is the different subnets sorted by the rank of how many hidden
machines were found on that subnet, and the y axis is the
number of hidden machines found. From the figure, we can
see the variety in the number of hidden machines found in
different subnets (which ranges from 1 to 245). Most subnets
(about 74%) had less than 10 hidden machines.

VII. DISCUSSION

In the previous section, we demonstrated the efficacy of
our indirect scan technique, based on a TCP/IP side channel
in the Linux SYN backlog. In this section, we discuss how our
direct scan compares to Nmap’s direct scan, and present some
limitations of both our indirect and direct scan techniques.
We also discuss how we informed network operators of our
experiments and gave them the ability to opt out.

TABLE I
ADDITIONAL HOSTS FOUND VERSUS NMAP VIA DIRECT SCAN BY DIRECT

SCAN TYPE

Scan method Additional hosts found Percentage
SYN 569 55.7%
SYN-ACK 233 22.8%
ICMP-ECHO 25 2.45%
ICMP-TS 32 3.13%
ICMP-FRAG 351 34.4%
UDP 173 16.9%

A. Nmap vs. our scan

We compared the results of our comprehensive direct scan
with Nmap’s host discovery scan. Our direct scan found
39,163 machines that were up, while the Nmap host discovery
scan found 38,252 machines. There are 1,131 differing results
between our direct scan and Nmap’s host discovery scan, 1,021
(90.3%) of them are reported as “up” only by our direct scan,
and only 110 (9.7%) are reported as “up” only by Nmap’s
host discovery scan. Table I shows details in terms of the
percentage of each technique to help find hosts which were
blind to Nmap’s host discovery scan. Because a machine could
be found by multiple scans, the sum of the percentages in the
table is above 100%.

B. Limitations of our SYN backlog scan

There are limitations of our technique. First, our technique
to exploit the Linux SYN backlog side channel is non-intrusive
if the zombie we scan is in a normal status. However our
current technique does not consider the case that the zombie
is scanned by other scanners at the same time. Our technique
requires sending at a rate 5 packets per second for about 60
seconds. If a scanner scans the same machine at the same time
using our technique, the packet rate will reach up to 10 packets
per second. Based on the result of a simulation experiment
we set in a virtual environment, any packet rate faster than 9
packets per second will fill the Linux SYN backlog because
the kernel will not be able to drop old entries as fast as the
SYN backlog is filling. Therefore, in this case the machine’s
backlog will be totally full and the server will send SYN
cookies. SYN cookies still allow other clients to connect to the
server, but the Linux implementation of SYN cookies does not
support window scaling so the flow control of the connection
may be more limiting. This is a rare case, and Internet hosts
typically have their bandwidth limited by congestion control
rather than flow control. Nonetheless, in future work we plan
to develop an adaptive scan that backs off if it is detected
that others are also sending SYNs to the zombie and leaving
them in a half-open state. Second, although our statistical
hypothesis model has allowance for some special cases (that
SYNs could be removed because of ARP request timeouts or
ICMP unreachable error messages when a target machine does
not exist), we have not thoroughly tested the assumptions we
made about applicable rate limits for a variety of operating
systems and versions for the host and gateway router.

Another two limitations are worth noting for our compre-
hensive direct scan. Our direct scan targets a limited number of
popular ports in the SYN scan and SYN-ACK scan. However,
some other ports might be open in a target machine and a
firewall is preventing outside connections except on that open
port. For example, we found one target machine with port 25
open for an SMTP service, which appeared to be down to our
direct scan but was found by our indirect scan. Furthermore,
we did not implement multiple experiments in our direct
scan, which makes it susceptible to packet loss. This can be
seen in the comparison of our direct scan with Nmap’s host
discovery scan. Although all the techniques used in Nmap’s
host discovery scan are included in our direct scan, Nmap
still found 110 (9.7%) machines to be up which appeared
to be down according to our direct scan. Because of these
two limitations, some of the machines not located by our
direct scan that were located by our indirect scan may not
be “hidden” in the sense that they are completely invisible
from outside the firewalled network, but note that our direct
scan is more comprehensive than existing direct scans and
still such machines cannot be found via our direct scan. Also,
our direct scan includes a SYN-ACK scan while our indirect
scan is based on the target replying to unsolicited SYN/ACKs,
meaning that with respect to SYN-ACKs the target is definitely
hidden behind a firewall.

C. Opting out of measurements

During our scans, the scanning machines all were serving
web pages with an explanation of our scan and contact
information for network operators who wanted us to exclude
their networks from our experiments. At no time during our
experiments were we contacted by any network operators
about our experiments. Because of the low rate at which we
send SYN packets, our technique is non-intrusive.

VIII. RELATED WORK

Staniford et al. [10] and Gates et al. [11] focus on large
enterprise network protection. Leckie and Kotagiri [12] use
a probabilistic approach to detect port scans. Treurniet [13]
aims to detect stealthy scans using classification schema.
Muelder et al. [14] proposes a visualization for port scan
detection. Jung et al. [15] develop a fast port scanning detec-
tion method using the theory of sequential hypothesis testing.
Other works [16],[17], [18] use a neural network approach to
detect malicious port scanning. Gates [19], [20] and Kange et
al. [21] consider stealthy port scans that are based on using
many distributed hosts. There has also been some research
on improving port scans, such as port scan techniques that
increase the speed of horizontal scans based on techniques that
use the same principle as SYN cookies [22] [23] [24] [25].

Our work is based on the work of Ensafi et al. [2], [26], [27],
since we use the SYN backlog as a side channel for making
inferences. There are other works using different types of side
channels. Morbitzer [28] explores idle scans in IPv6. Qian et
al. [29], [30] infer the TCP sequence number of a connection
and perform off-path TCP/IP connection hijacking using a

firewall-based side channel. Some works use global IPID fields
to perform inference for Internet measurement purposes. Chen
et al. [31] explore new uses of the IPID to infer the amount of
internal traffic generated by a server, the number of servers in
a large scale server complex, and one-way delays to a target
computer. Bellovin [32] describes a technique to detect NATs
and count the number of hosts behind them. Kohno et al. [33]
use the IPID to perform remote device fingerprinting. Our
work is based on the SYN backlog TCP/IP side channel, not
globally incrementing IPIDs.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a new Internet measurement
technique that uses TCP/IP side channels to find machines
hidden behind firewalls. Our technique can find machines
which are behind a firewall that prevents outside IP addresses
from sending packets to the internal network. Our technique
was shown to be widely applicable on the Internet by our
novel ingress filtering test, and is also resistant to packet loss
due to the use of our statistical analysis model. The results
show the existence of hidden machines on the Internet by
comparing with our comprehensive direct scan. Planned future
work includes using a slower packet rate to implement our
technique, to make it non-intrusive even when there are other
scanners scanning the same machine. Also the direct scan
can be improved by targeting more common ports and doing
multiple experiments to be robust to packet loss.

With respect to Internet measurement, our proposed tech-
nique is a first step towards being able to measure firewall
rules, trust relationships, and all of the complexities that define
today’s Internet.

X. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
valuable feedback. This material is based upon work supported
by the U.S. National Science Foundation under Grant Nos.
#0844880, #0905177, #1017602, #1314297, and #1420716.
Jed Crandall is also supported by the DARPA CRASH pro-
gram under grant #P-1070-113237.

REFERENCES

[1] Antirez, “new tcp scan method,” Posted to the bugtraq mailing list, 18
December 1998.

[2] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall, “Idle port scanning
and non-interference analysis of network protocol stacks using model
checking,” in Proceedings of the 19th USENIX Security Symposium,
ser. USENIX Security’10. USENIX Association, 2010. [Online].
Available: http://dl.acm.org/citation.cfm?id=1929820.1929843

[3] D. J. Bernstien, “SYN Cookies,” http://cr.yp.to/syncookies.html.
[4] “SYN Cookies,” http://en.wikipedia.org/wiki/SYN cookies.
[5] M. De Vivo, E. Carrasco, G. Isern, and G. O. de Vivo, “A review of

port scanning techniques,” ACM SIGCOMM Computer Communication
Review, vol. 29, no. 2, pp. 41–48, 1999.

[6] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. Insecure, 2009.

[7] S. Seth and M. A. Venkatesulu, TCP/IP ARCHITECTURE, DESIGN,
AND IMPLEMENTATION IN LINUX. Hoboken, New Jersey: John
Wiley & Sons, Inc, 2008.

[8] “Nmap Host Discovery,” http://nmap.org/book/man-host-discovery.html.
[9] “Nmap OS Detection,” http://nmap.org/book/man-os-detection.html.

[10] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated
detection of stealthy portscans,” Journal of Computer Security, vol. 10,
no. 1, pp. 105–136, 2002.

[11] C. Gates, J. J. McNutt, J. B. Kadane, and M. I. Kellner, “Scan
detection on very large networks using logistic regression modeling,”
in Computers and Communications, 2006. ISCC’06. Proceedings. 11th
IEEE Symposium on. IEEE, 2006, pp. 402–408.

[12] C. Leckie and R. Kotagiri, “A probabilistic approach to detecting
network scans,” in Network Operations and Management Symposium,
2002. NOMS 2002. 2002 IEEE/IFIP. IEEE, 2002, pp. 359–372.

[13] J. Treurniet, “A network activity classification schema and its application
to scan detection,” Networking, IEEE/ACM Transactions on, vol. 19,
no. 5, pp. 1396–1404, 2011.

[14] C. Muelder, K.-L. Ma, and T. Bartoletti, “Interactive visualization for
network and port scan detection,” in Recent Advances in Intrusion
Detection. Springer, 2006, pp. 265–283.

[15] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” in Security and Privacy,
2004. Proceedings. 2004 IEEE Symposium on. IEEE, 2004, pp. 211–
225.

[16] B. Soniya and M. Wiscy, “Detection of TCP SYN scanning using
packet counts and neural network,” in Signal Image Technology and
Internet Based Systems, 2008. SITIS’08. IEEE International Conference
on. IEEE, 2008, pp. 646–649.

[17] J. Cannady, “Artificial neural networks for misuse detection,” in National
information systems security conference, 1998, pp. 368–81.

[18] J. Li, G.-Y. Zhang, and G.-C. Gu, “The research and implementation of
intelligent intrusion detection system based on artificial neural network,”
in Machine Learning and Cybernetics, 2004. Proceedings of 2004
International Conference on, vol. 5. IEEE, 2004, pp. 3178–3182.

[19] C. Gates, “Co-ordinated port scans: a model, a detector and an evaluation
methodology,” 2006.

[20] ——, “Coordinated Scan Detection.” in NDSS, 2009.
[21] M. G. Kang, J. Caballero, and D. Song, “Distributed evasive scan tech-

niques and countermeasures,” in Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2007, pp. 157–174.

[22] “Scanrand,” https://www.sans.org/security-resources/idfaq/scanrand.php.
[23] “Unicorn Scan,” http://www.unicornscan.org/.
[24] “Zmap,” https://zmap.io/.
[25] “MASSCAN: Mass IP port scanner,”

https://github.com/robertdavidgraham/masscan.
[26] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall, “Detecting

intentional packet drops on the Internet via TCP/IP side channels.”
[27] ——, “Detecting intentional packet drops on the Internet via TCP/IP side

channels: Extended version,” CoRR, vol. abs/1312.5739, 2013, available
at http://arxiv.org/abs/1312.5739.

[28] M. Morbitzer, “TCP Idle Scans in IPv6,” Master’s thesis, Radboud
University Nijmegen, The Netherlands, 2013.

[29] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference
attack,” in Security & Privacy. IEEE, 2012.

[30] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative TCP sequence
number inference attack: how to crack sequence number under
a second,” in Proceedings of the 2012 ACM conference on
Computer and communications security, ser. CCS ’12. New
York, NY, USA: ACM, 2012, pp. 593–604. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382258

[31] W. Chen, Y. Huang, B. F. Ribeiro, K. Suh, H. Zhang, E. de Souza e
Silva, J. Kurose, and D. Towsley, “Exploiting the IPID field to infer
network path and end-system characteristics,” in Proceedings of the 6th
international conference on Passive and Active Network Measurement,
ser. PAM’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 108–120.

[32] S. M. Bellovin, “A technique for counting NATted hosts,” in Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment. ACM,
2002, pp. 267–272.

[33] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting,” Dependable and Secure Computing, IEEE Transactions

on, vol. 2, no. 2, pp. 93–108, 2005.

