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Abstract—Convolutional Neural Networks(CNNs) are com-
plex systems trained to recognize images, texts and more.
However, once trained, they are regarded as black-boxes that
are not easy to analyze and understand. Visualizing the
dynamics within such deep artificial neural networks can
provide a better understanding of how they are learning
and making predictions. In the field of scientific simulations,
visualization tools like Paraview have long been utilized to
provide insights. We present in situ TensorView to visualize
the training and functioning of CNNs as if they are systems of
scientific simulations. In situ TensorView is a loosely coupled
in situ visualization open framework that provides multiple
viewers with the ability to visualize and understand their
networks. It leverages the capability of co-processing from
Paraview to provide real-time visualization during training and
predicting phases, and avoids heavy I/O overhead. Tensorview is
easily coupled with Tensorflow, as it only requires the insertion
of a few lines of code into a TensorFlow framework. In this
work, we showcase visualizing LeNet-5 and VGG16 using in situ
TensorView. With the insight provided by Tensorview, users can
adjust network architectures, or compress pre-trained networks
guided by visualization results.

Keywords-Deep Neural Networks; Neural Network Compres-
sion; Online Pruning

I. Introduction

Deep Convolutional Neural Networks (CNNs) have im-
proved the state-of-art in vision and speech recognition[1].
Large CNNs[2], [3], [4] contain dozens to hundreds of lay-
ers. Training a deep convolutional neural network is slow [5]
because the number of trainable parameters is extremely
large (431k in LeNet-5, 61M in AlexNet) [6]. Tuning CNNs
is very time-consuming, as researchers often need to try out
different architectures and hyper-parameters such as learning
rates, optimizers, batch sizes, etc. Sometimes, deep neural
networks cannot learn effectively, or even stop learning
altogether, because of inappropriate hyper-parameters.

To steer away from trial-and-error designs, we hope to
answer the following questions through visualization means:
Are there any redundant neurons or connections in large
networks? Can we remove some neurons to make networks
simpler? Can we quickly find gradient vanishing or explosion
problems during training process? In order to answer these
questions, the visualization tools themselves need to be

1The publication has been assigned the LANL identifier LA-UR-17-
27402.
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Figure 1: The first convolutional layer in the VGG16 net-
work. (a) The activation images of one batch of samples.
(b)The activation distributions of the same batch. Colors
indicate similar groups. (c),(d) Two activation images with
high similarity.

scalable in order to process and visualize huge amounts of
neurons and their connections.

Scientific visualization frameworks like Paraview [7] and
VisIt [8] can visualize large simulations and enable scientists
to interactively explore the data [9]. They greatly help sci-
entists to get insights and accelerate data-driven researches
and discoveries. Thus, it is promising to use Paraview to
visualize the training, predicting and fine-tuning of deep
convolutional neural networks. In this paper, we extend our
previous work[10] to overcome the large I/O overhead in
visualizing deep convolutional neural networks. The new
in situ TensorView is a loosely coupled in situ visualiza-
tion framework[11]. It embeds light-weighted TensorView
Catalyst adaptor in CNNs built on TensorFlow framework
and provides in situ visualizations of the extracted data in a
Paraview client through the Catalyst co-processing pipeline.

In the feed forward pass, we visualize the activations
a.k.a feature maps(we would use the term activation and
feature map interchangeably for the rest of this paper)
to identify similar responses among neurons and analyze
if there exist redundant neurons. In the back propagation



pass, we visualize the changes of weights to quickly detect
gradient vanishing or explosion problems. The goal of in
situ TensorView is to help researchers to interactively build,
use and understand their deep neural networks.

The Contribution of this paper can be summarized as
follows:
• We extend our previous work which applied Paraview
and visualization toolkit (VTK)[12] techniques to visu-
alize deep convolutional neural networks. The improved
method aims to help researchers to interactively visu-
alize their neural networks in training and predicting
phases. To the best of our knowledge, we are the first
to use the Catalyst co-processing library to provide
in situ visualization of deep convolutional neural net-
works. This reduces the I/O overhead and enables us to
visualize large networks.

• We provide multiple in situ viewers to show both
statistical information about similarities between neu-
rons and intuitive images of activations and weights of
convolutional filters. Previously, users have to wait until
the training have finished. This improvement enables
real time visualization.

• We carry out case studies to demonstrate the scalability
and generality of our framework. We visualize both
a small LeNet-5 network being trained from scratch
and a large VGG16 network with pre-trained weight
parameters.

The rest of the paper is organized as follows. In section
II we discuss the related work.I n section III, we explain the
methodology of our framework. In section IV, we present
the results of two case studies. We conclude the paper in
section V.

II. Related Work

Researchers have been working hard to understand deep
convolutional neural networks. A recent survey by Homan
et al[13] summarized state-of-art visualization work from 6
aspects: Why do people want to visualize deep learning?
Who needs such visualizations? What can be visualized
in deep learning? How to visualize these content? When
should these visualizations be carried out? Where is the deep
learning visualization being used? As we are interested in
designing an interactive and scalable visualization frame-
work, we summarized some previous visualization works
from the aspect of answering two non-mutually exclusive
questions: What is the relevant content to be visualized in
deep learning? When can these visualizations be carried out?

A. Visualize learned features

The first type of visualization content shows what fea-
tures are most helpful in distinguishing different classes.
Deconvnet[14] and Guided propagation[15] reverse acti-
vations back to features in the original input spaces to

demonstrate the learned features in higher layers. Deep vi-
sualization tool[16] and ConvNets[17] use back-propagated
gradients to generate expected features that have the most
class discriminant power. Methods in this category visualize
activations to provide concrete illustration of class discrim-
inant features. Most of them visualize saved activation files
after training.

B. Visualize computation graphs
Another type of visualization efforts helps to design

and examine the network architectures. TensorFlow Graph
Visualizer[18] provides the visualization of network struc-
tures as mental map of data flows and low-level operations.
These methods visualize network structures from program-
ming code before training.

C. Visualize weight parameters
The third category visualizes the weight values to depict

searching paths through high dimensional weight parameter
spaces. The approximate linear paths and the following
trajectory of stochastic gradient descent(SGD) is studied
by[19] to answer questions such as Do neural networks enter
and escape a series of local minima? Lorch[20] visualizes
the learning trajectory with the principle components(PCA)
of weight parameters. These methods visualize the learning
trajectories with saved weight files after training.

D. Comprehensive visualization frameworks
Many comprehensive frameworks visualize all the above

contents. Glorot and Bengio[21] visualize statistical distri-
butions of weights, activations, gradients and loss functions.
CNNVis[22] applies clustering algorithm to analyze the
roles of neurons according to their averaged activations.
TensorBoard[23] uses histograms to visualize statistical dis-
tributions of loss function, weight parameters and other
variables defined in TensorFlow[24] framework. It provides
graph tools to visualize computation graphs and opera-
tions. Both TensorBoard Embedding Projector and Rauber
et.al[25] apply projection techniques like t-SNE[26] or PCA
to visualize the data of interests. Although the above meth-
ods provide users with interactive visualizations, they need
to save summary data files during training and the visualiza-
tions are processed after training. The amount of summary
data is huge for large networks and long training process. To
addresses this challenge, ActiVis[27] uses sampling(around
1000 samples ) and CNNVis applies clustering algorithm to
visualize only part of the neurons and their connections.

Our previous work[10] provides a case study of visualiz-
ing the dynamics of a small convolutional neural network
using Paraview to process the saved data. However, it takes
long response time to visualize a pre-trained VGG16 net-
work due to the heavy I/O overhead(For example, we need
to render batchsize×224×224×64 = batchsize×3 million
points per time step to visualize the feature maps produced
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by the first convolutional layer of VGG16 network). Com-
pared with our previous work and other above comprehen-
sive visualization tools, our improved method uses loosely
coupled in situ visualization pipeline and VTK polygon
data structure to improve the scalability of our previous
TensorView open framework. Thus, we can visualize the
training of large neural networks in real time.

III. In situ TensorView Open Framework
We describe the details of our open framework in this

section. This includes the choice of visualization and deep
learning platforms, the target data to visualize and the output
and rendering of visualization results.

A. The platforms
We choose the Paraview Catalyst[7] co-processing

pipeline and TensorFlow as the building blocks of our
open framework. Figure2 shows the architecture of the in
situ TensorView open framework. In situ Tensorview can
directly render the visualization results from data coming
through the Catalyst co-processing pipeline. So it scales
when visualizing large neural networks. Users also can save
data of interest in ascii (.csv) or binary (.vtp) format for later
use.

Figure 2: The architecture of our open framework. Then
users can choose to output .csv or .vtp file or use the Catalyst
co-processing pipeline to perform in situ rendering on a
Paraview client.

B. The visualization content and their representations
In this section, we summarize the contents and their

representation in our previous work as the background. The
in situ TensorView framework utilizes Paraview’s color maps
and 3-dimensional models to visualize four types of content.
They are weight windows in grid layout, trajectories of
weight changes, distribution view of activations, and image
view of activations.

1) Grid of weight windows: We directly display the
changes of weight values in convolutional filters in the layout
of a grid of small windows. Each convolutional filter has
a window of size w × w. Each convolutional layer has
c × f number of such windows. c and f are the number
of color channels and the number of filters respectively. We
arrange all c × f filter-windows into a grid layout. This is
the weight-grid. Figure3 shows this grid of weight windows

Figure 3: The weight-grid of conv1 in simplified LeNet-5.
(a)The weight-grid at initial state. (b)The weight-grid after
8 epochs of training.

Figure 4: 4 trajectories of different subspaces of weight
parameters in conv1 of simplified LeNet-5. Step0 is gray,
Step44,000 is pink.

of a convolutional layer. For this particular example, the 16
filter-windows are arranged into a 4 × 4 grid. Each filter-
window has only one grey color channel and is represented
by 3 × 3 = 9 colored blocks. Blue blocks represent negative
weights and red blocks represent positive weights. Red
blocks are higher than blue blocks along the z-axis in this
3-D representation. This helps users to see the changes of
weights more clearly.

2) Trajectories of weight changes: We depict the changes
of weight parameters like a trajectory through the high
dimensional spaces. Figure4 shows 4 trajectories. We use 3
arbitrary dimensions of the weight parameters as our x,y and
z coordinates. Then we use gray to pink colors to represent
time steps.

3) Distribution view of activations: We flatten each fea-
ture map and display them in shapes of probability distri-
butions. We compute Pearson’s correlation coefficient(PCC)
between feature maps and use colors to represent similar
convolutional filters. Figure5(a) shows 16 feature maps of
one training batch from the first convolutional layer of
simplified LeNet-5. Each feature map is flattened and the
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activation values are normalized to between [0, 1]. The
blue group contains 3 feature maps have high Pearson’s
correlation scores. The green group contains 2 feature maps
that are also similar to each other.

Figure 5: Visualizing feature maps from the first convo-
lutional layer of simplified LeNet-5. (a)Distribution-view.
(b)Image-view. (c)Heatmap of Pearson’s Correlation Co-
efficients(PCC). Darker blue represents higher correlation
values.

4) Image view of activations: We directly display acti-
vations as images. Combining the statistics view and the
image view, users can find out redundant neurons in their
networks. Figure5(b) shows the same 16 feature maps as the
above example. Their sizes are 28× 28. Users can find they
resemble some input images.

C. Output format and rendering
The in situ TensorView open framework provides flexible

output methods that work for multiple data format supported
by the Paraview. The most convenient method is to use
ascii files because Paraview can directly import .csv files.
Users can easily build the output files and use them in
other visualization tools like Matlab or Python Matplotlib.
However, the I/O overhead makes this format not scalable
for visualizing large networks. For example, it takes 85
Megabytes storage and 60 seconds to load feature maps
from the first convolutional layer of VGG16 into Paraview
client. The VTK polygon data format is more efficient to
load. The feature maps mentioned above uses 35 Megabytes
disk storage in .vtp format. It only takes 2-3 seconds to load
them into Paraview client. It is a good choice for large and
complex neural networks and if users want to save the data
for later analysis.

The Catalyst co-processing pipeline is great for in situ
analysis. The data directly goes through the socket connec-
tion to the Paraview client. It essentially uses the same VTK
polygon data structure but entirely avoids the overhead of file
I/O. Thus users are able to see the visualization results in
real time.

IV. Case Studies
We use two case studies to illustrate how users can use

our open framework to visualize their neural networks. First,
we visualize the training process of a simplified LeNet-5.
Second, we visualize the predicting process of a pre-trained

Figure 6: Left: Gradient vanished due to inappropriate
learning rate. Right: A normal learning process.

VGG16 network. In both cases, our visualization open
framework can help users to find out redundant convolutional
filters. We only visualize the weights and activations from
the first convolutional layers. This is because the feature
maps produced in this layer are larger than feature maps
produced by later layers. Also, because this layer is at the end
of the back-propagation path, we are more likely to observe
here the problems of gradient vanishing or explosion.

We build the in situ TensorView open framework with
Catalyst co-processing libraries on top of the Tensorflow
framework. Then we use use Paraview client 5.2.0 to render
and visualize the data coming through the co-processing
pipeline. Experiments were carried out on servers with Intel
Xeon CPUs of 2.40GHz and 128G RAM, accelerated by
Nvidia P100 GPU cards.

A. Simplified LeNet-5
We simplify the LeNet-5 to half of its original size. It

has 16 and 32 filters in convolutional layers. The filter size
is reduced to 3 × 3. The number of neurons in the fully
connected layer is also reduced to 512. With the visualization
results from in situ TensorView, we find out activations of
some filters are similar. When the learning rate is too high,
both the grid of weight windows and the trajectory of weight
changes stop to change.

1) Visualization of weights: Fig. 3 shows the grid of
weight windows of convolutional layer1. Users can see the
colors of red and blue blocks grow darker as the training con-
tinues. The colors stop to change within a short time if the
learning rate is too high. Figure 4 presents 4 trajectories of
weight parameters from the first convolutional layer. Along
the z-axis, the paths go down several steps. This indicates
the neural network is searching around one local minimum
then finds a path to jump to another local minimum. Figure6
shows two trajectories. The right side trajectory is the same
as in the Figure 4(a). The left trajectory is very straight. This
is because the learning rate is too high and the network stops
learning due to gradient vanishing.

2) Visualizing activations: Figure 5(a) shows the
distribution-view and image-view of activations from the
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Figure 7: (a)At step 1080, filters {3,4,9} and filters {6,11}
are similar. (b)At step 1680, filters {4,9} and {11} are
removed. A new group contains filter {5,7} are marked with
green color. (c)At step 2220, filter {7} is removed and {5}
is kept. A new group contains filters {2,14} is green.

first convolutional layer in the simplified LeNet-5. According
to Pearson’s Correlation Coefficient values between filters,
we put filter 3,4 and 6 into a blue group and filter 6 and
11 into a green group. With this visualization results, users
can identify redundant convolutional filters and prune similar
neurons during the training process. A detailed pruning
method is described in our previous work [10]. Figure7
shows the distribution-view in real time. After 5 epochs,
we reduced 16 filters to 12. The network stays stable after
that. After 40 epochs of training, the pruned network keeps
99.17% accuracy.

B. Pre-trained VGG16 network
As transfer learning becomes prevalent, it has become

standard practice to reuse pre-trained convolutional layers
and only fine-tune the fully connected layers. Thus, our sec-
ond case study visualizes the feature maps from a pre-trained
VGG16 network. Figure1 shows the image-view,distribution-
view and two feature maps. The visualization results indicate
that some convolutional filters are redundant.

1) Image-view of feature maps: The 64 feature maps
contains 64 × 224 × 224 = 3 million pixels. So we convert
the feature maps into the VTK polygon data structure to
render the image-view quickly. In Paraview client, users can
zoom in and check the images in detail. Figure8a shows
filters {8,15,18} produce similar feature maps from one
batch of training data. Users can easily find two of these
three filters are redundant. However, Figure8b shows some
texture feature maps. It is difficult for users to check whether
the corresponding filters {52,53,54} are similar or not. In
this case, the distribution-view provides better comparison
of feature maps.

2) Distribution-view of feature maps: Figure9 display the
distribution-view of the feature maps from the first train-
ing batch. The two groups {8,15,18} and {32,61} marked
in figure9 can be confirmed in the image-grid visualiza-
tion(previous Figure8a). We can check the distribution-views
of filters {56,57,58}(The 3 filters at the upper left corner of
Figure9). They have obvious differences and they are not in
one group.

(a) Zoom in feature maps of filter {8,15,18}

(b) Zoom in feature maps of filter {52,53,54}

Figure 8: (a)Filter8, 15, 18 produce similar feature maps.
(b)Texture feature maps are difficult to compare.

Combining the image-view and distribution-view, users
can find out the similarities and decide if they want to
compress and retrain the network. We did not experiment
on merging similar filters and retraining this pre-trained
VGG16 network. Because the activations of similar filters
approximate to each other, we expect the retraining of the
pruned network can converge quickly in a few epochs.

Figure 9: The distribution-grid shows accumulated feature
maps of the first training batch at VGG16’s convolutional
layer1. Distribution-window of {8,15,18} are quite similar.
{32,61} are similar.

V. Conclusion
In this paper, we present the in situ TensorView open

framework. This open framework supports multiple output
formats to visualize neural networks of different complex-
ities. In situ TensorView leverages the scalability of Par-
aview Catalyst co-processing library to visualize and analyze
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the training and predicting of large Covolutional Nueral
Networks. It provides flexible views that visualize weight
parameters and the activations of convolutional filters. These
views include the grid of weight windows, the trajectories of
weight changes, distribution-view of activations and image-
view of activations. With these views, users can observe the
dynamics of their networks during training and predicting
phases. The Pearson’s Correlation Coefficient encoded by
group colors in the distribution-view can help users to decide
whether some of the convolutional filters are redundant. The
visualization results can guide users to prune or compress
their networks.

We present the visualizations in two case studies. They
are a simplified LeNet-5 network and a pretrained VGG16
network. The experiments show that in situ TensorView can
visualize both small and large convolutional neural networks.
It can help users to visualize the networks in cases of training
a network from scratch or use some pretrained networks to
make predictions.
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