
keybin
Key-based Binning for Distributed Clustering

Xinyu Chen∗, Jeremy Benson† and Trilce Estrada‡
Department of Computer Science, University of New Mexico

Email: ∗xychen@cs.unm.edu, †jeremybenson@cs.unm.edu, ‡estrada@cs.unm.edu

Abstract—Traditional machine learning algorithms often re-
quire computations on centralized data, but modern datasets are
collected and stored in a distributed way. In addition to the cost of
moving data to centralized locations, increasing concerns about
privacy and security warrant distributed approaches. We propose
keybin, a distributed key-based binning clustering algorithm
for high-dimensional spaces. keybin locally generates a spatial
key for each data point across all dimensions without needing
knowledge of other data. Then, it performs a conceptual Map-
Reduce procedure in the index space to form a global clustering
assignment. We present an implementation and a case study on
the capabilities and limitations of this approach, showing that
this algorithm can learn a global clustering structure with limited
communication and can scale with the dimensionality and size
of data sets.

I. Introduction

Modern data acquisition techniques, the need for high per-
formance analysis, and constraints regarding data management
are slowly rendering centralized data analysis obsolete. In
domains like climate simulations, high-energy physics, astron-
omy, and remote sensing, data transfer represents a major
bottleneck. In medical or financial domains, policies regarding
security and privacy impede data openness, even when volume
is not a concern.

A true and tried principle in the Big Data era is to minimize
data movement. Coupling data analytics with simulations, or
placing them alongside data acquisition tasks, yields large
performance gains [1], [2], [3], [4]. While some algorithmic
approaches have been successfully used to decentralize data
analysis in specific domains, they still lack in at least one of
the following core aspects of distributed learning: scalability,
accuracy, or generality. For example, many traditional machine
learning and data mining approaches rely on expensive training
phases and often require gathering raw data in a central-
ized [5], [6], [7] or semi-centralized [8], [9] way. Existing
distributed approaches either require synchronized communi-
cation [10], [11], [8] or iterate for a long time, incurring large
communication costs among parameter servers [12], [13]. Oth-
ers are tied to a particular domain and do not generalize [14],
[15], sacrifice accuracy for the sake of scalability [16], [17],
[18], or are affected by the curse of dimensionality [19] (i.e.,
scaling the number of data features negatively impacts an
algorithm’s predictive capabilities [20]).

In this paper, we present keybin, a scalable and accurate
clustering algorithm, suitable for distributed and privacy con-
strained environments. Our method is scalable horizontally

(i.e., every data sample can be processed in parallel without
requiring any direct knowledge of other data samples). It is
also, to a certain extent, scalable vertically (i.e., every feature,
or dimension, can be processed independently). Our clustering
method is able to organize large distributed datasets in a single
pass and requires minimum communication.
The idea behind keybin is to map every data point into a

multidimensional key in space. Keys represent bins, whose
densities reflect a particular spatial data agglomeration. Multi-
ple bins are built for every dimension and are associated with
only that dimension. Assuming a number of distributed sites,
each with their own local data, the clustering process is:
1) Every data point in a distributed site updates its corre-

sponding bins in space in a fully parallel way; data points
and features can be processed locally and independently.

2) Distributed sites communicate with each other or with
a master to consolidate a global view of bin densities.

3) As every distributed site updates its model, local statis-
tics are computed, noisy or uninformative dimensions
are collapsed, and final clustering assignments are made.

Communication among sites in the second and third phases
is performed only once, and transferred data contains only
aggregated information that is considerably smaller than the
raw datasets. The time complexity of our algorithm is linear
with respect to both the number of points and the number of
dimensions. More specifically, the processing of each point is
done in constant time. Unlike most distance-based clustering
methods, our algorithm can benefit from a large number of
dimensions and data volume. Our contributions are:
• A distributed linear time complexity clustering approach
that is able to group data across multiple dimensions, even
with a very limited view of the data.

• A probabilistic method to identify and discard noisy or
uninformative dimensions.

• An experimental study of our algorithm’s scalability and
accuracy using stress-testing and comparison with other
clustering algorithms.

The remainder of this paper is organized as follows: in
Section 2, we summarize some influential algorithms and
related approaches. Section 3 presents our method. In Section
4 we cover experimental results. Section 5 presents our discus-
sion regarding our algorithm’s limitations, reasoning behind
parameter selection, and overview of ongoing and future work.
Finally, Section 6 concludes the paper.

II. Related Work

Lazy learning and nearest neighbors are easily adapted
for clustering on Big Data because they adapt automatically
when a new sample is received and there is no training cost
associated with them. In practice, however, these types of
algorithms do not scale well with massive amounts of data,
as producing a local model every time a sample needs to
be classified is computationally expensive. This problem has
been addressed and partially mitigated by Zhang et.al. [21],
who proposed a lazy tree that dynamically maintains high-
level summaries of historical stream records and classifies new
samples in sub-linear time complexity.

Other optimizations for the nearest neighbors algorithm
include flexible distance NN [22], meaningful NN [23], and
approximate KNN [20]. Lazy and nearest neighbor approaches
are affected by storage and memory constraints, and while the
problem is mitigated with hybrid approaches, a lazy approach
still fails for systems collecting massive amounts of data in
a distributed way. Semantic Hashing [6], is a deep graphical
model used as a variation of nearest neighbors that requires
a small portion of additional data for each input. For each
query a shortlist of that data which is closest to the particular
input is used. The search time is independent of the size of
the input collection and linear with respect to the size of the
shortlist. Even though training time is done one layer at a
time, it can be computationally expensive if the input corpus
changes dynamically. Distributed approaches like [11], [12],
[24] process data in an iterative way and rely on parameter
servers to converge. The main drawback of these approaches
is the constant communication required over a long training
phase.

Density-based clustering methods are closely related to
our approach. DBSCAN [25] can find underlying clustering
structure without a-priori knowledge of the number of clusters,
a useful property in cases where some sites may only contain
a subset of the global structures. It should be noted here that
the knowledge of total number of global clusters may even be
misleading for algorithms like K-means. Finding the optimal
parameter of ε and min support is a process of trial and error.
BD-CATS [26] and PDSDBSCAN [27] are two recent paral-

lel density-based clustering algorithms that rely on disjoint-set
data structures to represent clusters and union-find techniques
to build local clusters, merging them across nodes. These
algorithms perform well at scale through sophisticated load
balancing; they handle clustering for large cosmology and
plasma physics simulations. However, both algorithms require
global knowledge of the data and require partitioning in
the preprocessing steps. Moreover, the inter-node raw data
exchange leads away from our focus scenario of distributed
analytics under privacy constraints.

KOTree [14], an N-dimensional tree for Knowledge Or-
ganization, also performs density-based clustering, but it is
tied to a particular domain and does not generalize. Some
efficient dimensionality reduction techniques address the issue
of scalability by using prior knowledge of the data (e.g.,

principal components, covariance matrix, or other statistics).
Feature selection techniques such as matrix factorization [16],
locality sensitive hashing[17] and random projection [18]
reduce dimensionality in order to achieve scalability at the
expense of accuracy. But when the i.i.d. property cannot be
guaranteed, like when data needs to be analyzed as a stream, in
situ or is stored in geographically distributed locations, these
methods fail.
Clustering techniques that consider privacy preservation

have been studied for a decade [28], [29], [30]. Efforts in ran-
domization and permutation represent the bulk of anonymiza-
tion methods, but these operations do not necessarily preserve
privacy since the individual data can be recovered from
spectral filtering [31]. Using cryptographic techniques in two-
party or multi-party communications is another approach, but
it burdens communication further. Moreover, these methods
still need to move vast datasets to centralized computations
and are not able to work at scale.
Index-based [32] and grid-based hierarchical clustering al-

gorithms [33], [34] also provide insight towards privacy. Each
individual site first builds lower-level clustering hierarchies
locally. The global structure can be merged later based on
knowledge extracted from lower levels. Sub-space Clustering
algorithms are closely related and the most influential for
us. CLIQUE [35] and MAFIA [36] first find dense regions
in lower-dimensional spaces. Then they merge these lower-
dimensional regions into bigger higher-dimensional hyper-
cubes if they can find a common-face between two regions.
If sites only exchange knowledge of common-faces between
regions, the privacy can be well preserved. The limitation
of these two algorithms is the expensive combinations of all
possible lower-dimensional regions, so scalability drops with
rise in dimensionality.

III. Algorithm

Most traditional clustering techniques rely on computing
pairwise distances between points or regions to form clusters
and are exponentially expensive as the number of points and
the number of dimensions grow. When data are collected
and stored on distributed sites, these traditional clustering
techniques fail to scale. So, our question becomes: How
can we decide whether two points are similar? We took
inspiration from Locality Sensitive Hashing [17] to answer
this. We map data points to indices along every dimension
(i.e., every feature represents one dimension). By organizing
these indices into bins and merging to primary clusters, we
generate a list of primary cluster identifiers, which we call
a key. Then, forming clusters can be done in the space of
keys. The a-priori algorithm for mining frequent patterns [37]
is behind our final grouping approach; points that belong
to one higher-dimensional cluster also stay together in each
lower-dimensional region. Points with different keys belong to
different clusters. Two crucial byproducts of this approach are:
1) Keys represent a summarized knowledge of the raw data,

which allows us to preserve privacy

2) The reduction on keys (instead of distance comparisons)
allows us to improve scalability

Assume we want to cluster a dataset d0 of size M × N ,
where M is the number of data points and N is the number of
features. We denote d0 = {xi, j | i < M, j < N}, with i being
the unique identity of a data point with feature j. Without
lack of generality we could assume M = 1 for a data stream
scenario or multiple d’s for a distributed case. We call d our
raw data for the rest of the paper and we use superscripts to
denote distributed datasets (d0, d1, d2, ..., dK , for k distributed
sites). The steps of our method are as follows:

1) Assigning a key to a point. Using point features, the
point is assigned to multiple indices, each corresponding
to a bin in the specific dimension. The ordered set of
indices represents a key. As points get their indices, bins
update their density. This step only involves the point
itself and the value range of each dimension. In the
distributed scenario, this is only done with local data.

2) Computing global densities. In the distributed scenario,
distributed sites communicate their computed bin den-
sities either to a master site or among each other in
order to consolidate an integrated view of the data. This
updated model is broadcast back to the distributed sites.

3) Collapsing dimensions. By analyzing the distribution
of bin densities per dimension, we determine which
dimensions converge into a similar clustering pattern
and which fall out of the norm. Noisy or uninformation
dimensions are collapsed, improving clustering accuracy.

4) Building primary clusters. A primary cluster is a
partial clustering assignment viewed from one particular
dimension. This step merges adjacent bins into primary
clusters if they exceed a density threshold.

5) Assigning points to final clusters. Once primary clus-
ters are built, every point can be mapped to a specific
set of primary clusters in all of its dimensions, leading
to a final global clustering assignment.

When the distribution of data points is skewed, a primary
cluster may be under-represented by only a few points and
may be assigned as outliers or noise by other algorithms. With
the aggregated global knowledge, the corresponding primary
cluster can be constructed and the points will not be assigned
as noise. Adding a new point can be done in constant time,
as it is equivalent to calculating the key and querying the
cluster label. Updating clustering assignments on the fly is
also trivial, as new clusters can be created in empty regions
by updating their respective bin densities while smaller clusters
can be merged as they grow in size.

A. Assigning a key to a point

This step is performed with local data; we assume one
dataset d. For point xi ∈ d, xi, j denotes its jth feature.
Our method converts a point’s coordinates into a list of
binary indices (idx), indicating a relative location along each
dimension. The number of bits per index is defined by the
user as the depth of our algorithm. Every index is associated

with a bin, and the depth determines the number of bins per
dimension, as B = 2depth . idxi, j , which is the index for xi, j ,
is in range of [0, 2depth − 1].
The kernel getKey (Algorithm 1), intakes the depth, an

estimated lower and upper boundaries representing the range
of the specific dimension, and the point’s jth feature. Then,
it recursively divides the dimension’s range into equal halves
for depth number of steps. This procedure is conceptually
building a depth-deep binary tree to accommodate the range.
Each leaf contains a sub region of the bounded dimension
and every xi, j is associated to a leaf. The getKey kernel is
applied to xi, j∀i, j independently. Thus, it can be efficiently
implemented in parallel per data point and feature.

Algorithm 1 getKey
1: procedure getKey(max_depth, lower, upper, xi, j)
2: for depth < max_depth do
3: µj,depth ← 1/2(lower + upper)
4: if xi, j ≥ µj,depth then
5: append 1 to idxi, j
6: lower ← µj,depth
7: else
8: append 0 to idxi, j
9: upper ← µj,depth

10: return idxi, j . return leaf index

getKey converts the value of xi, j to an index idxi, j . Given
depth = 6, points in the upper-right-most cell will have binary
indices (111111, 111111) for x and y dimensions respectively,
which corresponds to bins 63, 63. It is worth noting that
even though our algorithm needs an estimated lower and
upper bounds for each dimension, these values can be simple
estimates. If the approximate bounds are tighter than the actual
bounds, outermost points will be put into the same bin. This
means we could also put outliers into the outermost bins. If
the approximate bounds are wider than the actual boundary,
inner points will be squeezed into the same bin, meaning we
could lose resolution for smaller depth values. However, for
most real-world applications, we typically have an appropriate
estimation of range values.
The produced indices serve as bin identifiers. The algorithm

accumulates densities of bins according to the number of
data points falling into them. For a given data point, the
concatenation of indices represents its key. Once the local sites
calculate a key for each of their data points and compute bin
densities, this is the last time that raw data is needed in the
clustering process. Note that key calculation is a lightweight,
constant-time process that does not exhibit data dependencies.
From this point on, all the communication and calculations are
done over the key space and bin densities. For a streaming,
in-situ, or in-transit clustering algorithm, key generation can
be directly coupled with simulations or data acquisition. Bins
can be kept in memory and raw data can be immediately sent
to secondary storage.

B. Computing global densities
Calculation of bin densities in the local sites can be viewed

as a partial view of the underlying cluster structures of the
process being studied. In this step, we aggregate densities
from all sites into a comprehensive global view for the later
clustering task. There are two cases: (1) all the sites worked
with the same parameters to build keys and bins or (2)
parameters were not consistent across sites. In the first case,
integration is trivial; all the corresponding bins are summed
up. In the second case the process is just marginally more
complex: given the different upper and lower bounds for
each site, we need to calculate the overall range, the set of
global partitions, and the set of bins that correspond to each
partition. After that, bins can be summed up per partition.
The updated densities are sent back to all the distributed sites,
where the clustering assignment is finalized, as explained in
Sections III-D and III-E. Communication per site comprises
the list of bins, which is O(N ∗2depth) where N is the number
of dimensions and depth is the depth of the indices. If there are
K sites, the communication is O(2K ∗N ∗2depth) << O(M ∗N)
where M is the number of points. For example, if we had
a floating point (i.e. 4 bytes per record) 1000-dimensional
dataset distributed among different locations, each with 1
million points, that is a 4 GB dataset per site, assuming a
depth of 8, our algorithm would transfer about 2 MB per site.
Now, assuming 1 billion points (4 TB) per site, our algorithm
would still transfer about 2 MB per site.

For simplicity, we assume a centralized topology through
this paper (i.e., multiple distributed sites and one master site
that performs the aggregation of bins). However, keybin does
not necessarily rely on a master-worker topology to calculate
the global model. A ring topology, for example, would work
in a fairly similar way. Assuming sites s are numbered from
0 to K − 1, site s0 would send its partial view to s1. s1

would integrate both views and send the updated result to
s2, and so on. Two passes around the ring are enough to
consolidate a global view of the data. A hierarchical approach
is also possible by arranging sites as if they were leaves in
a binary tree and communicating densities up until reaching
the root. In these scenarios, communication is O(K) and
O(Klog(K)), respectively (explicitly, O(4K ∗ N ∗ 2depth) and
O(2K ∗ N ∗ 2depthlog(K ∗ N ∗ 2depth))). Even in this decen-
tralized approach, where communication is done across all the
different distributed sites, privacy is still preserved. Since sites
only communicate information in an aggregate form, raw data
cannot be reconstructed. keybin saves bandwidth and storage,
as communication is not iterative and a few passes are enough
to achieve convergence. Also, the amount of information sent
is orders of magnitude smaller than a raw or even a compressed
dataset.

C. Collapsing dimensions
An important challenge in high-dimensional data is that

many dimensions or combinations of dimensions may have
uninformative values or noise. These type of dimensions are
especially problematic for clustering tasks, since a cluster, by

definition, is made up of data points that are similar by some
metric. Similarity in a high-dimensional space is affected by
the curse of dimensionality. As the number of dimensions
increases, the space becomes increasingly sparse. In a sparse
high-dimensional space, very similar data points could become
distant as meaningless dimensions are added. The opposite is
also true - as uninformative dimensions are removed, distant
points could become closer, exposing well defined patterns and
groupings.

10 20 30 40 50 60

c

10

20

30

40

50

60

c

(a) KS Matrix for 60 dimensions (darker colors = higher similarity)

(b) Box and whiskers plot of KS scores used for the rejection rule

Fig. 1: Collapsing uninformative or noisy dimensions using a
2-sample KS test

Our hypothesis is that given an underlying clustering pro-
cess, it will generate similar grouping patterns across most
of its dimensions. We also hypothesize that noisy or unin-
formative dimensions will exhibit a different behavior than
most of the other dimensions. To test our hypothesis, we
needed to quantify the relative deviation between every pair of
dimensions and exclude those that behave like outliers. Note
that, since every distributed site has received the same global
information, this process can be done locally.
To determine which dimensions are candidates to be col-

lapsed, we used the computed bins densities to form an
empirical distribution per dimension, and the Kolmogorov-
Smirnov [38] test (KS-test) to determine when two samples

differ significantly. An important advantage of using the KS-
test for our purpose of determining outlier dimensions is
that this test does not make any assumption regarding the
distribution of data (i.e., is non-parametric and distribution
free). Specifically, we use the two-sample KS-test, which is
sensitive to differences in both location and shape of the
empirical cumulative distribution functions of the two samples.
For every pair of dimensions, we compute the KS statistic
given by:

Ds1,s2 = supp |F1,s1 (p) − F2,s2 (p)|
where s1 and s2 are the sizes and F1,s1 and F2,s2 are the

empirical distribution functions of the first and the second
sample, (i.e., first and second dimension), and sup is the
supremum function or least upper bound between the two
empirical distributions. For each dimension j < N , we use its
list of bins to compute an empirical distribution Fj,sj . Then, for
each subsequent dimension g | g = j + 1, j + 2, ..., N , we com-
pute the respective empirical distribution Fg,sg . Afterwards, we
calculate the two-sample KS-statistic between Fj,sj and Fg,sg

and update positions (j, g) and (g, j) of a symmetric matrix
KS of KS-statistics (as seen in Figure 1a for 60 dimensions).
In order to blacklist potentially noisy or uninformative

dimensions, we statistically analyze KS. For each column in
KS, we compute its mean (i.e., µc = [µc,1, µc,2, ..., µc,N]).
The expectation of all µc’s would be analogous to the most
common behavior across dimensions. However, since we an-
ticipate that noisy dimensions will behave like outliers, we
instead calculate the median (mks) and standard deviation
(σks) of µc and use it as the canonical expected behavior for all
the dimensions. The rejection rule for a particular dimension
j is if µc, j > mks + γσks , then blacklist dimension j. In
the rejection rule, γ is a constant factor that determines the
rejection boundary. For the traditional definition of outliers γ
is equal to 2, but the rule can be more lenient or more strict
for larger or smaller values of γ, respectively.
Figure 1b depicts the rejection rule in action, where each

box and whisker diagram represents the empirical distribution
of each dimension and horizontal lines inside of the boxes
are the dimension means (µc’s). The dotted horizontal line
represents the median of the means (mks) and the black solid
line represents the rejection boundary for γ = 1. Boxes in bold
are dimensions for which we added random noise.

D. Building primary clusters
After communicating global bin densities (bins), primary

clusters are locally built in every distributed site. Primary
clusters are sets of bins organized in a partial clustering
assignment for a single dimension. Unlike CLIQUE [35] and
MAFIA [36], we build primary clusters on each dimension,
then directly reduce to the entire dimensional clusters, skipping
all intermediate lower-dimensional dense regions. A bin is
instantiated only when there is a data point whose index on
this dimension is associated to that bin. binsb, j is the density
of bin b in the jth dimension.

To build primary clusters, we merge adjacent bins if their
density is larger than a predefined threshold minD. For very

sparse clustering, this threshold can be set to zero. A primary
cluster represents an agglomeration of points viewed from one
particular dimension. We refer to them as PC where each
element PCq contains a bin identifier, denoting the starting of a
bin partition that extends until PCq+1 in the specific dimension
(e.g., if PC1 = 25 and PC2 = 43 it means that PC1 contains
an agglomeration of bins from 25 to 42).
Algorithm 2 shows the procedure for building primary

clusters. It has 2 main sections: a for loop traversing all the
dimensions, excluding those that have been blacklisted, and
a second for loop merging adjacent bins forming primary
clusters; neither have data dependencies, and thus can be done
in parallel. The input bin densities are considerably smaller
than raw data and have no sensitive information that could
compromise privacy.

Algorithm 2 Build Primary Clusters
1: N . number of dimensions
2: minD . minimum density in bin
3: B = 2depth . number of bins
4: bins← updatedDensitiesFromMaster()
5: blacklist ← collapseDimensions()
6: procedure buildPCs(bins, blacklist, B, N,minD)
7: PC ← 0 . primary clusters
8: q← 0 . counter of PCs
9: for j = 1 to N do . merge bins for every dimension
10: if j < blacklist then
11: b← 1, f lag ← f alse
12: for b = 1 to B do . for bins in dimension c
13: if binsb, j > minD AND not f lag then
14: PCq ← b . gets first bin in sequence
15: f lag ← true
16: else if binsb, j <= minD AND f lag then
17: q← q + 1 . initialize next PC
18: f lag ← f alse
19: return PC . return primary clusters

E. Assigning points to final clusters

The final step makes a final assignment of points to their
respective clusters on each site. The aggregated clusters com-
prise the entire high-dimensional space, with exception of
the blacklisted dimensions. The key for a final cluster is
the concatenation of PCq’s of each one-dimensional primary
cluster. The intuition being that if points belong together in
a high dimensional cluster, they will be together with high
frequency in lower dimensional clusters. Although the possible
combination of primary cluster keys is vast, the real worst case
is each point forms a unique "group". So we can bound the
maximum number of final clusters to be M . Since, in this case,
the bin densities that all sites use to build primary clusters
and then final clusters is broadcast by the master, then it is
guaranteed that the final set of final clusters will be the same
across sites. This guarantee holds even if data is highly skewed
or even if some clusters are not represented at all in some sites.

We illustrate the whole procedure with a didactic example.
Consider a process generating data in a three dimensional
space. The data is collected and stored in two different sites.
In Step 1 we compute bin frequencies on each site. The local
views are shown in Figure 3. In this case, where data samples
in both sites are not identically sampled, the distribution across
dimensions is different from one site to the other.

Site 1 Site 2

z

y x

z

y x

(a) 3D data acquisition in two distributed sites

(b) View in site 1 (c) View in site 2

Fig. 2: Step 1. Computing keys and local bin densities

In Step 2 a global view is aggregated by combining all
partial views from the distributed sites. Figure 3a shows the
global 3D process, and Figure 3b shows the global integrated
view of the data.

z

y x

Text

Global view

(a) Global integration (b) Global view

Fig. 3: Step 2. Computing an integrated view

In this example, the combined global view is not separable,
as dimension z is made up of random Gaussian noise. If
dimension z was used during the final clustering assignment,
the number of possible partitions would be 54, as there
are three different modes. In that case, most of the real

0 10 20 30 40 50 60
x

10

20

30

40

50

60

y

Fig. 4: Steps 3, 4, 5. Clustering formation

clusters will be partitioned on average by a factor of 3. Step
3 of our algorithm deals with this problem, by statistically
analyzing all dimensions and collapsing those that are deemed
to be uninformative. Figure 4 shows the 3D process collapsed
into two dimensions. Histograms on the sides show the bin
densities for the two remainding dimensions. These densities
are used in Steps 4 and 5 to generate primary clusters and to
compute the final clustering assignment.

IV. Implementation

We implemented keybin using mpi4py and a master-worker
topology. The program receives two input parameters: depth
and minD. depth decides the bin width per dimension, which
is the resolution of the algorithm. As depth grows, keybin is
able to explore the space at a finer resolution, which decreases
performance and in some cases, can over-partition clusters.
The optimal value of depth for a given dataset is affected by the
number and shape of the underlying clustering structures, the
number of points, the number of features, and how separable
the clusters are. The other parameter, minD decides if two
adjacent bins can be merged into primary clusters. These
two parameters in keybin are analogous to the ε (radius)
and minPts (minimum density in a cluster) parameters in the
DBSCAN algorithm. In this sense, our algorithm combines
traits of density based and hierarchical clustering algorithms.
As there are no universal optimal values of depth and minD
for all datasets, keybin needs to iterate through a range of
values to find out the best clustering pattern. Note that while
we implemented keybin in mpy4py, using a master-worker
topology, keybin is not constrained to this implementation
or topology. Given the appropriate communication channels,
keybin can easily work as a wide-area algorithm for remote
and geographically distributed sites.
We use a synthetic data generator to create random high

dimensional data with noisy features. By using synthetic
data, we are able to create large and very high-dimensional
datasets with varying levels of noise and separability. This
control mechanism can help us avoid ceiling effects while
testing keybin and other clustering algorithms under systematic
conditions. Source code, settings, and datasets are available at
https://lobogit.unm.edu/datascience/keybin-cluster2017

V. Evaluation

Although we leverage mpi4py to implement keybin, the
algorithm does not depend on specific MPI functions and does
not require tightly coupled communication. Our algorithm is
general for broader clustering applications, where data are
created and stored in a distributed manner. Instead of the
term node which is more often used in MPI environments,
we use the term site to refer to a more general concept of a
geographically distributed site. Under the restriction of no raw
data exchange between sites, we empirically evaluate keybin
in four steps:

1) First we quantify the effect of collapsing noisy dimen-
sions on the accuracy of keybin.

2) Second, we compare keybin’s accuracy and elapsed time
with two well-known clustering algorithms: K-means
and DBSCAN.

3) Third, we include an extended study about the influence
of number of distributed sites and data imbalance on
keybin’s accuracy.

4) Finally, we evaluate the scalability of keybin as the
number of dimensions, points, and distributed sites grow.

We ran the experiments on the Xena cluster at the Center
for Advanced Research Computing of the University of New
Mexico. Xena is a PowerEdge R730 / Intel Xeon CPU E5-
2640 at 2.6 GHZ with 32 nodes, 16 cores per node, Infinibad
interconnect, and 4GB of RAM per core.

A. Collapsing noisy dimensions
The goal of these experiments is to provide a quantitative

justification regarding Step 3 in our algorithm. We want to
determine whether it is possible to get a gain in accuracy
with respect to the baseline by collapsing certain dimensions.
In this experiment, we generated 1, 000 10-dimensional data
points in 2 sites. There are 5 global clusters. Among the
10 dimensions, 2 of them are noise. A noisy dimension
contains mixed uniformly distributed noise and several modes.
Modes appear at random in discrete positions. To quantify
the clustering accuracy, we report precision, recall, and the
f1-score. Precision is the ratio tp/(tp + f p) where tp is the
number of true positives (i.e., points assigned to a cluster C
that actually belong to C) and f p the number of false positives
(i.e., points assigned to a specific cluster C that do not belong
to C). The precision is the ability of the clustering not to assign
a point to a cluster C that does not belong to it. Recall is the
ratio tp/(tp+ f n) where f n the number of false negatives (i.e.,
the number of points that belong to a cluster C but were not
identified as part of C). The recall is the ability to find all the
data points that belong to a cluster. The f-score is the harmonic
mean of precision and recall.

After 30 trials, the collapsing of noisy dimensions increases
precision by 24.2% (from 66.9% to 91.1%) but slightly
decreases recall by 4.4% (from 95.2% to 90.8%). The overall
f1-score accuracy is improved by 14.0% (from 0.751 to 0.891).
The reason for the increase in precision and decrease in
recall is because noisy dimensions are a mixture of uniformly

distributed noise and random agglomerations. In this situation,
bin densities are more likely to be clumped together on the
noisy dimensions. Our empirical study shows that before
collapsing, keybin tends to assign points to larger and more
spread agglomerations, reducing the number of clusters found.
After removing noise, keybin tends to find smaller and more
compact clusters.

B. Comparing keybin with other clustering methods
Traditional distributed approaches assume that data points

hold the i.i.d property, but in most real-world processes,
this property is too optimistic. Our global clustering does
not make this assumption and is shown to work well even
when distributed sites are very skewed. In this experiment
we compare keybin’s performance compared to other well-
known and widely-used clustering algorithms: K-means++
(i.e., and optimized version of the popular K-means) and
DBSCAN, both from scikit-learn 0.17.1. Also, we compare
with the state of the art HPC implementation of DBSCAN,
PDSDBSCAN [27], and attempted a comparison with the GPU
implementation of MAFIA (GPUMAFIA [39]).
Our first experiment determines the ability of the different

algorithms to find the correct number of clusters when data
is slightly unbalanced. For this scenario, we generated 80, 000
data points with 100 dimensions. These points are divided
in four distributed sites. The global structure consists of five
global clusters. Each site has 20, 000 points, but only 4 out of
the 5 clusters are dense while 1 is very sparse. While 4 clusters
make up for 24.975% each, 1 cluster comprises only 0.1%
of the data. For this experiment we compare accuracy and
running time of keybin, K-means, DBSCAN, and PDBSCAN.
We were unable to include the comparing performance of
GPUMAFIA as it stopped converging with as little as 40
dimensions.

We set the number of iterations to 6 for all the three
algorithms to get the best accuracy measure. keybin iterates
through depth = 4, 6, 8, and minD ∈ {0, 1}. K-means iter-
ates through 6 values of k, including the optimal value 5.
DBSCAN and PDSDBSCAN iterate through ε ∈ {1, 10, 25}
and minPts ∈ {5, 10}. In total, 30 trials per algorithm. In
Table I, we report average number of clusters found, recall,
and precision across all sites.

Algorithm Avg. Clusters Precision Recall Time (s)
keybin 5.00 1.00 0.99 63.68 (63,64)
K-means 4.33 0.97 0.74 127.56 (109,145)
DBSCAN 5.00 1.00 0.75 341.19 (323,358)
PDSDBSCAN 32.69 N/A N/A 156.12 (89,222)

TABLE I: Average accuracy and time with confidence intervals
for 5 clusters in 4 sites with unbalanced data (80, 000 data
points, each with 100 dimensions)

Even with this modest dataset and the same number of
iterations, keybin is 2 times faster than K-means and more
than 5 times faster than DBSCAN. The execution time of
PDSDBSCAN is widely variable, ranging from as little as 12
seconds to more than 700 seconds; it is worth noting though,

that a small number of nodes is not the optimal setup for
PDSDBSCAN. In terms of accuracy, keybin is always able to
find the 5 different clusters. K-means is tricked into finding
less groups for some of the runs. DBSCAN can find the
correct number of clusters but with lower accuracy. A possible
reason for DBSCAN’s lower recall is that large spread clusters
may be split and merged into smaller ones, creating more
false negative cases. Surprisingly, In 20 out of 30 iterations
PDSDBSCAN found zero clusters. In the remaining 10 runs,
it found an average of 32 clusters and a maximum of up to
240, thus making unfeasible a direct comparison of accuracy in
the 100-dimensions scenario. Other tests show PDSDBSCAN
performing at 0.24 to 0.31 precision and 0.54 to 0.63 recall
for 10, 20, and 40 dimensions. Table I shows the number
of clusters found, recall and precision accuracy. The last row
compares the elapsed time.

In order to understand the time growth and accuracy of
the different algorithms as the number of points increases,
we modified the experiment by varying the number of points
from 2000, 5000, 10000, 20000, and 40000. Still, we use
100-dimensional data with 5 clusters and 4 sites. Since PDS-
DBSCAN was unable to perform comparable to the other
algorithms for the 100-dimensional test, we decided to exclude
it from this experiment. Figure 5 shows the time and f1-score
for the three algorithms. Precision and recall remained close
to 1 for keybin, while K-means and DBSCAN kept them in
the 0.7 and 0.9 range respectively. In this experiment, the
difference is more evident for the time complexity among the
three methods. On average, K-means remained 2 to 3 times
slower than keybin. DBSCAN showed up to 10 times the
slowdown as compared to keybin, and exhibited an exponential
trend.

C. Evaluating keybin’s on varying levels of unbalanced data
The goal of this experiment is to evaluate how keybin

performs under a range of data imbalances on different number
of sites. We fixed the number of clusters to 16, we set the
number of dimensions to 10, and the number of points per
site 64000 (1 million in total). Then, we factor the number
of sites in powers of two as {2, 4, 8, 16} and we defined three
different types of data imbalance uniform, each cluster has a
6.25% share of the data; one out, there is one cluster missing
from each site; one large there is one big cluster consisting
of 90% points and 15 small clusters with only 0.667% of
the data. Table II shows that accuracy becomes more stable
when the number of sites increases. This is reasonable because
the probability of making an error Pe is the product of such
probability for each site

∏N
i=1 pie.

D. Evaluating dimensionality growth and separability
We tested keybin’s scalability as a function of dimension-

ality growth and accuracy as a function of separability. In the
following experiments, we fixed the number of sites to 16, and
the number of total points to 1.28 million. Each site contains
80, 000 data points. We varied the dimensionality of the dataset
by {10, 100, 1000}. To test the ability of keybin to accurately

(a) keybin - time (b) keybin - f1 score

(c) K-means - time (d) K-means - f1 score

(e) DBSCAN - time (f) DBSCAN - f1 score

Fig. 5: Comparison of time and accuracy as the number of
points increase

Experiment Sites Clusters found Recall Precision

uniform

2 15.67 1.0 0.997
4 16 1.0 1.0
8 16 1.0 1.0
16 16 1.0 1.0

one out

2 15 0.999 0.877
4 14 0.998 0.866
8 11.67 0.999 0.736
16 15 1.0 1.0

one large

2 15.33 0.999 0.997
4 16 1.0 1.0
8 16 1.0 1.0
16 16 1.0 1.0

TABLE II: Average accuracy through growing site number
over different patterns of data imbalance

find clusters at varying degrees of separability, we varied the
number of clusters by {2, 4, 8, 16, 32, 64, 128} within the same
size hypercube. The rationale was to generate a space with
sparse and separable clusters for the smaller values, and very
dense and non-separable clusters for the higher values.
Figure 6a shows a linear trend for keybin’s time complexity.

When the dimensionality increases, the elapsed time increases
linearly. The number of clusters does not affect keybin’s
elapsed time. As expected, Figure 6b shows that the accuracy
of keybin depends on data separability. The dimensionality
does not influence accuracy but the number of clusters affects
the data separability, as the size of the hypercube does not
change with the number of clusters and they all have to share

(a) scalability as a function of
dimensionality growth

(b) accuracy as a function of sep-
arability

Fig. 6: Study of running time and accuracy as dimensions grow
and as space becomes non-separable

the same "volume." In this case, keybin tends to assign non-
separable data to a big cluster, so recall is high but precision
decreases. At 32, there are a few groups that are not separable,
and at level 64 or higher, keybin cannot distinguish the highly
mixed groups.

VI. Limitations

Orthogonality Assumption. A basic idea behind our algo-
rithm is the conceptual framework from the a priori algorithm.
The idea is analogous to finding frequent patterns of {p, q},
where both p and q have to be frequent. Here we assign p and
q to the final clustering label only if they belong to the same
primary cluster on every dimension. This idea is the backbone
of our map-reduce like approach in assigning the final cluster
labels, and it needs the assumption that data dimensions are
orthogonal. In non orthogonal situations, this does not hold.

Although we do not need pairwise distance computa-
tions, the distance between points affects how we put them
into bins. We use the distance metric to illustrate how the
orthogonal assumption influences our algorithm. The dis-
tance between points p and q is dx(p, q) = |x2 − x1 | on
dimensionx . If we include the orthogonal dimensiony for
consideration, the actual distance in the 2D space is d(p, q) =
2
√
(x2 − x1)2 + (y2 − y1)2 ≥ |x2 − x1 |. The distance d(p, q) will

only be further stretched. We can use the bin number of x1, x2
and y1, y2 to infer the actual positions of p and q in 2D space.
If we include the nonorthogonal dimension′y for consider-

ation, the actual distance d(x ′, y′) in the 2D space may be
shortened for some cases. That is to say, we cannot rely on
the bin number of x

′

1, x
′

2 and y
′

1, y
′

2 to infer the actual position
of p′ and q′ in the 2D space. Ongoing work is in identifying
nonorthogonal dimensions and collapsing them, which should
help address this issue.

Projection overlapping. The bin frequencies on each dimen-
sion can be seen as a partial view of the data set projected into
particular dimensions. They are shadows of the data set. Where
the shadows of two clusters overlap, the above algorithm
cannot separate them. If pi is the probability of two clusters
overlapping on the ith dimension, then the probability that
our algorithm cannot separate the two clusters is the product
of such overlapping probabilities on all dimensions. As the
dimensionality increases,

∏N
i=1 pi quickly becomes diminishes.

Thus, our algorithm is likely to perform better as the number
of dimensions increase.

VII. Conclusion
In this paper, we present a key-based binning clustering

algorithm that is able to discover a global clustering structure
in scenarios where there is a limited global view or direct
access to the data. Our algorithm welcomes large dimensional
datasets because it has been implemented without pair-wise
point comparisons and can be optimized in a embarrassingly
parallel manner. The communication that is needed to learn
clustering patterns from a distributed collection is extremely
small when compared to the entire original, raw dataset. As
our technique leverages the benefits of parallel operations
and feeding only need-to-know information from one point
to another, individual data points cannot be reproduced, and
so an inherent aspect of privacy is maintained.
Our algorithm takes advantage of a filter that collapses

uninformative dimensions; this technique leads to a high
accuracy in finding global clustering structures, resulting in
a performance which is comparable to DBSCAN and one
that outperforms k-means, given that these two algorithms are
presented the pooled data.
We also discussed the limitations of our algorithm. In

particular, its assumption for dimension orthogonality and the
probability that it cannot separate groups if their bin frequen-
cies overlap along all dimensions. As the dimensionality grows
higher, the probability of poor accuracy due to overlapping
drops quickly. Applying domain-specific knowledge can ben-
efit our algorithm by providing guidelines for collapsing, par-
ticularly in the context of noisy or non-orthogonal dimensions.
Ongoing work revolves around the idea of gathering and

exchanging bin frequencies between distributed sites. In this
paper we present an mpi4py version of keybin, but this
does not mean we rely on the parallelization power of MPI
functions. A more ideal approach will be in using GPU threads
to boost performance because the nature of our algorithm does
not require pairwise distance computations and again, can be
implemented through embarrassing parallelism.

Acknowledgment
This material is based upon work supported by the Na-

tional Science Foundation for the grant entitled CAREER: En-
abling Distributed and In-Situ Analysis for Multidimensional
Structured Data (NSF ACI-1453430). We thank the UNM
Center for Advanced Research Computing for computational
resources used in this work.

References
[1] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan,

H. Abbasi, and S. Klasky, “Goldrush: Resource efficient in situ sci-
entific data analytics using fine-grained interference aware execution,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, pp. 78:1–
78:12.

[2] D. Tiwari, S. S. Vazhkudai, Y. Kim, X. Ma, S. Boboila, and P. J.
Desnoyers, “Reducing data movement costs using energy-efficient, active
computation on ssd,” in 2012 Workshop on Power-Aware Computing and
Systems. USENIX, 2012.

[3] J. C. Bennett, H. Abbasi, P. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen, “Combining in-situ and in-transit pro-
cessing to enable extreme-scale scientific analysis,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, pp. 49:1–
49:9.

[4] M. Dreher and B. Raffin, “A flexible framework for asynchronous in
situ and in transit analytics for scientific simulations,” in IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, May
2014, pp. 277–286.

[5] J. Šíma and P. Orponen, “General-purpose computation with neural
networks: A survey of complexity theoretic results,” Neural Computing,
vol. 15, no. 12, pp. 2727–2778, 2003.

[6] R. Salakhutdinov and G. Hinton, “Semantic hashing,” Int. J. Approx.
Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

[7] J. Zhou, L. Chen, C. L. P. Chen, Y. Wang, and H. X. Li, “Uncertain
data clustering in distributed peer-to-peer networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–15,
2017.

[8] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson, “Distributed
clustering using collective principal component analysis,” Knowledge
and Information Systems, vol. 3, no. 4, pp. 422–448, 2001.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–22,
2011.

[10] T.-Y. Liu, W. Chen, and T. Wang, “Distributed machine learning: Foun-
dations, trends, and practices,” in Proceedings of the 26th International
Conference on World Wide Web Companion, ser. WWW ’17 Companion,
2017, pp. 913–915.

[11] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and
S. Datta, “Clustering distributed data streams in peer-to-peer environ-
ments,” Information Sciences, vol. 176, no. 14, 2006.

[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’16, 2016, pp.
265–283.

[13] M. Abadi, “Tensorflow: Learning functions at scale,” in Proceedings
of the 21st ACM SIGPLAN International Conference on Functional
Programming, ser. ICFP 2016, 2016.

[14] T. Estrada and M. Taufer, “On the effectiveness of application-aware self-
management for scientific discovery in volunteer computing systems,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, pp. 80:1–80:11.

[15] H. Kawashima, R. R. Sato, and H. Kitagawa, “Models and issues on
probabilistic data streams with Bayesian Networks,” in Proc. of the
International Symposium on Applications and the Internet (SAINT),
2008.

[16] Y. Liu, L. C. Jiao, F. Shang, F. Yin, and F. Liu, “An efficient matrix
bi-factorization alternative optimization method for low-rank matrix
recovery and completion,” Neural Netw., vol. 48, 2013.

[17] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proceedings of the 25th International Conference
on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 1999,
pp. 518–529.

[18] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast
algorithms for projected clustering,” SIGMOD Rec., vol. 28, no. 2, pp.
61–72, 1999.

[19] A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma, “Design
and evaluation of decentralized online clustering,” ACM Trans. Auton.
Adapt. Syst., vol. 7, no. 3, pp. 34:1–34:31, 2012.

[20] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proceedings of the Thirtieth

Annual ACM Symposium on Theory of Computing. ACM, 1998, pp.
604–613.

[21] P. Zhang, B. J. Gao, X. Zhu, and L. Guo, “Enabling fast lazy learning for
data streams,” IEEE International Conference on Data Mining, vol. 0,
pp. 932–941, 2011.

[22] M. Barrena, E. Jurado, P. Márquez-Neila, and C. Pachón, “A flexible
framework to ease nearest neighbor search in multidimensional data
spaces,” Data Knowl. Eng., vol. 69, no. 1, pp. 116–136, 2010.

[23] D. Omercevic, O. Drbohlav, and A. Leonardis, “High-dimensional fea-
ture matching: Employing the concept of meaningful nearest neighbors,”
in IEEE 11th International Conference on Computer Vision, 2007, pp.
1–8.

[24] S. Boyd, “Convex optimization: From embedded real-time to large-scale
distributed,” in Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’11,
2011.

[25] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, and Others, “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[26] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić,
V. Roytershteyn, M. J. Anderson, Y. Yao, P. Dubey et al., “Bd-cats:
big data clustering at trillion particle scale,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2015, p. 6.

[27] M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne, and
A. Choudhary, “A new scalable parallel dbscan algorithm using the
disjoint-set data structure,” in Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society Press, 2012, p. 62.

[28] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “Pphopcm: Privacy-preserving
high-order possibilistic c-means algorithm for big data clustering with
cloud computing,” IEEE Transactions on Big Data, vol. PP, no. 99, 2017.

[29] Z. Gheid and Y. Challal, “Efficient and privacy-preserving k-means clus-
tering for big data mining,” in 2016 IEEE Trustcom/BigDataSE/ISPA,
Aug 2016, pp. 791–798.

[30] R. R. Gupta, G. Mishra, S. Katara, A. Agarwal, M. K. Sarkar, R. Das,
and S. Kumar, “Data storage security in cloud computing using container
clustering,” in 2016 IEEE 7th Annual Ubiquitous Computing, Electronics
Mobile Communication Conference (UEMCON), Oct 2016, pp. 1–7.

[31] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “Random-data
perturbation techniques and privacy-preserving data mining,” Knowledge
and Information Systems, vol. 7, no. 4, pp. 387–414, 2005.

[32] P. Jin and Q. Song, “A novel index structure r*q-tree based on lazy
splitting and clustering,” in IEEE International Conference on Computer
Science and Automation Engineering (CSAE), 2011, pp. 405–407.

[33] M. Bendechache, N. A. Le-Khac, and M. T. Kechadi, “Hierarchical
aggregation approach for distributed clustering of spatial datasets,” in
2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW), Dec 2016, pp. 1098–1103.

[34] M. Rahmani and G. K. Atia, “In pursuit of novelty: A decentralized
approach to subspace clustering,” in 2016 54th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), Sept 2016,
pp. 447–451.

[35] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic sub-
space clustering of high dimensional data for data mining applications,”
ACM SIGMOD Record, vol. 27, no. 2, pp. 94–105, 1998.

[36] S. Goil, H. Nagesh, and A. Choudhary, “MAFIA: Efficient and
scalable subspace clustering for very large data sets,” . . . Discovery
and Data Mining, vol. 5, pp. 443–452, 1999. [Online]. Available:
http://mrl.cecsresearch.org/Resources/papers/goil99mafia.pdf

[37] R. Agrawal, R. Srikant, and Others, “Fast algorithms for mining associ-
ation rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol.
1215, 1994, pp. 487–499.

[38] H. W. Lilliefors, “On the kolmogorov-smirnov test for normality with
mean and variance unknown,” Journal of the American statistical
Association, vol. 62, no. 318, pp. 399–402, 1967.

[39] A. Adinetz, J. Kraus, J. Meinke, and D. Pleiter, GPUMAFIA: Efficient
Subspace Clustering with MAFIA on GPUs. Springer Berlin Heidelberg,
2013, pp. 838–849.

