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ABSTRACT
We present KeyBin2, a key-based clustering method that is able
to learn from distributed data in parallel. KeyBin2 uses random
projections and discrete optimizations to efficiently clustering very
high dimensional data. Because it is based on keys computed in-
dependently per dimension and per data point, KeyBin2 scales
linearly. We perform accuracy and scalability tests to evaluate our
algorithm’s performance using synthetic and real datasets. The
experiments show that KeyBin2 outperforms other parallel cluster-
ing methods for problems with increased complexity. Finally, we
present an application of KeyBin2 for in-situ clustering of protein
folding trajectories.

CCS CONCEPTS
• Theory of computation→ Random projections and metric
embeddings; Unsupervised learning and clustering; MapRe-
duce algorithms; Numeric approximation algorithms;
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1 INTRODUCTION
State of the art, high-throughput scientific simulations enable bet-
ter understanding of natural phenomena. And while many meth-
ods are able to divide a large problem into small tasks and take
full advantage of distributed resources to perform parallel process-
ing [28, 31, 37, 46], they lack when it comes to performing global
analyses, as they usually rely on expensive data movement and
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centralized processing. In domains where data volume is continu-
ously growing (e.g., climate simulations - 32 PB [44], astronomy
- 200 GB/day [55] to 30 TB/day [42], and high-energy physics -
500 EB/day [12]), data movement represents a performance bot-
tleneck that increases resource pressure to storage, bandwidth,
memory, and CPU [57]. Coupling simulations with data analysis
yields promising performance gains [6, 19, 57, 61]. Some algorith-
mic approaches have been successfully used to decentralize data
analysis in specific domains and provide in-situ analytics (i.e, ex-
ecuting analysis tasks alongside simulations or data acquisition
tasks) [5, 21, 23, 30, 35, 40, 52]. However, deficiencies, in terms
of scalability, accuracy, or generality, are still present. In order to
scale analysis at the same rate as simulations, there is a need for
improved techniques for efficient dimensionality reduction, clus-
tering, pattern recognition, and anomaly detection, all considering
and constraining data movement.

In this work, we deal specifically with clustering, or the process
of identifying groups of data points that are related in a particu-
lar space. Clustering techniques often employ a distance metric
to evaluate whether two points are close in space or not. When
dealing with very large data volumes or data that is distributed,
distance calculations are a major bottleneck for scalability in clus-
tering algorithms. Our goal is to design an algorithm that extracts
knowledge in a way that is embarrassingly parallel (i.e., there are no
data dependencies and parallelism is effortless), data agnostic (i.e.,
data specifics are irrelevant), and can deal with batch processing
and streams.

In previous work, we presented KeyBin [13] which is a clustering
method based on distributed key calculations and binning to pro-
duce clusters from distributed data. The underlying idea in KeyBin
is to assign each point a hierarchical key in space. This key can be
computed independently based only on the point’s features and
does not need additional knowledge of other data points. Keys are
assigned to bins per every dimension (i.e., feature) in the dataset.
These computations are parallel and can be performed efficiently in
distributed environments. To perform a final clustering assignment,
it is enough to communicate just bin densities per every dimension
(i.e., an histogram). From this summarized information, uninfor-
mative or noisy dimensions can be collapsed and a final clustering
assignment is done by partitioning and merging the binning his-
tograms. An important aspect of KeyBin is that all the computations
on the original data can be done on site, in parallel, and without
computing pairwise distances. The only information that is commu-
nicated across nodes, processes, or distributed sites are the binning
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histograms. Bins are orders of magnitude smaller than the original
data and cannot be used to trace back or reconstruct the original
information. As such, this approach is ideal for distributed and
privacy sensitive scenarios. In this work, we present an updated
version of our KeyBin algorithm; in particular, we address three
major limitations of our initial design:

Orthogonality assumption. Although we do not perform pair-
wise distance computations, distance between points affects how
they are assigned into bins. Imagine the distance between points p
and q is dx (p,q) = |x2−x1 | on dimensionx . If we include an orthog-
onal dimensiony , the actual distance in the 2D space is d(p,q) =
2
√
(x2 − x1)2 + (y2 − y1)2 ≥ |x2 −x1 |. Then we can use the bin num-

ber of x1,x2 and y1,y2 to infer the actual positions of p and q in 2D
space. However, if instead there exists a nonorthogonal dimension′y ,
the actual distance d(p,q) in the 2D space might be shortened for
some cases. That is to say, we cannot rely on the bin number of
x1,x2 and y

′
1,y

′
2 to infer the actual position of p and q in the 2D

space.
Projection overlapping. The binning histograms on each di-

mension can be seen as a partial view of the data projected into
a particular dimension. If the projections of two clusters overlap,
KeyBin cannot distinguish them. If pi is the probability of two clus-
ters overlapping on the ith dimension, then the probability that our
algorithm cannot separate the two clusters is the product of such
overlapping probabilities on all dimensions

∏N
i=1 pi .

Partitioning heuristics. The only centralized operation in Key-
Bin consists on partitioning the binning histograms in order to
perform a final clustering assignment. This operation used a simple
heuristic based on bin densities to determine partitioning locations.
As the density landscape is not known in advance and every dataset
has its own inherent behavior, partitioning through heuristics is not
deemed to be robust and presents a serious limitation to accurately
identify clusterings.
In this paper we address these limitations by introducing an efficient
process for dimensionality collapsing based on random projections,
and a robust partitioningmechanism based on discrete optimization.
Our specific contributions are:

(1) We introduce KeyBin2, a significant extension of the original
KeyBin. The enhanced algorithm, takes advantage of random
projections and discrete optimization to provide robustness
and improve its ability to separate difficult datasets.

(2) We perform accuracy and scalability tests to evaluate our
algorithm’s performance using synthetic and real datasets.

(3) We present a case study for in-situ clustering of protein
folding trajectories using KeyBin2.

(4) We provide an implementation of KeyBin2 that runs on mul-
ticore GPU clusters, using both, a cuda-python compiler and
mpi4py.

The remainder of this paper is organized as follows: Section 2 briefly
summarizes related work. Section 3 presents the details of KeyBin2.
Section 4 presents the evaluation of KeyBin2 in terms of scalability
and accuracy. Section 5 presents a case study for in-situ analysis of
protein folding trajectories. Finally Section 6 concludes the paper.

2 RELATEDWORK
A variety of clustering methods have been proposed to address
dimensionality and scalability concerns [32, 59] in three main cat-
egories: partitional clustering approaches represented by the K-
Means[41] family, density based clustering approaches like DB-
SCAN [20] and DENCLUE[27], and hierarchical clustering like
CLIQUE [3] and MAFIA [24]. In the following paragraphs, we elab-
orate on these categories and discuss the relationship to our body
of work.

Partitional clustering like K-means[41], while a tried and tested
clustering technique, has a few key drawbacks: the number of clus-
ters, K, must be provided. X-means [50] proposes handling this
drawback with Bayesian Information Criterion (BIC) in order to
automatically select the optimal K values. A second limitation of K-
means is that it is unable to find non-convex clusters [59]. Modern
K-means with multi-threaded[54] or multi-core parallelization [38]
are able to deal with large amounts of data, but they still inherit the
above limitations. From our experiments, K-means performs well in
finding sphere-shape clusters but has a tendency to mislabel points
on the corners of box-shaped clusters. This is because points on
the diagonal of a box may be closer to other cluster’s center than
to their real cluster center. In contrast, KeyBin2 determines auto-
matically the number of clusters, is able to deal well with convex
clusters, and can handle points in box corners, as well.

Density based clustering. Density based clustering algorithms
have the advantage of finding non-convex clusters and that out-
liers and noise have less impact on the overall clustering accuracy.
Their basic idea is to consider regions with high density to be clus-
ters. DBSCAN[20] uses counting techniques to find dense regions
through the number of points within the radius of a neighborhood
that exceeds a given threshold. DBSCAN maintains high accuracy
in clustering data when given the appropriate radius and thresh-
old parameters. PDSDBSCAN[47] and its successor, BD-CATS[48],
are the state of art density based clustering algorithms, capable of
clustering up to a trillion points with up to 3-dimensions. Their
limitation is that they scale with the number of data points but
they are not able to handle very large dimensional data (i.e., inputs
with a very large number of features). DENCLUE[27] uses influence
functions to estimate probability densities of regions. The influ-
ence functions yield results comparable to Gaussian kernel density
estimations (KDE)[56]. The clusters are centered at influence at-
tractors, which are the local maxima of influence values. DBSCAN-
MR[15] apply Map-Reduce methods to build a distributed index
and optimize load balance. On top of this Map-Reduced algorithm,
GA-DBSCANMR[29] uses genetic algorithms to improve accuracy
by iteratively adjusting parameters such as minimum number of
points per cluster and maximum distance. HPDBSCAN[25] com-
bines OpenMP and MPI to parallelize DBSCAN and improve the
computation time. DOC[49, 52] finds and merges areas with den-
sity higher than the expected uniform distribution density to detect
clusters and outliers. When applied to system’s log analysis, the
DOC algorithm also implicitly uses ensemble results from multiple
bins and multiple features to improve accuracy.

Hierarchical clustering. Subspace Clustering algorithms be-
long to grid-based, hierarchical clustering algorithms and use bottom-
up search strategies, assuming that higher dimensional clusters
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are composed of lower dimensional subspace clusters. They also
assume some dimensions are not useful or are noise. Finding clus-
ters in subspaces can help exclude noisy dimensions. CLIQUE [3]
and MAFIA [24] find dense regions in lower-dimensional spaces,
and merge these lower-dimensional regions into bigger higher-
dimensional hyper-cubes if no common-face exists between two
regions. A comprehensive parallel framework [26] uses MPI to man-
age big amounts of data points. Due to the expensive combinations
of all possible lower dimensional regions, the time complexity of
grid-based subspace clustering algorithms is O(ck ′) [24]. The lim-
itation of these algorithms is in their inability to scale when the
dimensionality is high. In our work, we are able to scale linearly
with the number of dimensions because we build higher dimen-
sional clusters upon 1-dimensional groupings. With this approach,
we do not need to check for combinations of clusters in intermediate
subspaces.

Fern et al. [22] use random projections combined with an ensem-
ble approach for clustering. Under each individual projection, the
clustering algorithm learns part of the underlying patterns and the
final clustering labels are aggregated from previous results based
on the change of similarities. Our approach is different because we
do not perform pairwise comparison of data points and we use the
internal clustering dispersion to evaluate a projection rather than
an ensemble.

3 KEYBIN2
KeyBin2, our extension to KeyBin [13], is a linear-time algorithm to
perform distributed clustering. Assume a dataset D0 of sizeM × N ,
where M is the number of data points and N is the number of
dimensions (i.e., features). This algorithm extrapolates for data
streams withM = 1 and for distributed datasets with multiple D’s.
KeyBin2’s clustering process is as follows:

(1) Projecting into a lower space. To address some of KeyBin’s
limitations, we perform a random linear transformation to
each data point x ∈ RN → x ′ ∈ RNrp . This transformation
has two advantages: it rotates the data, reducing the likeli-
hood of projection overlapping in all of the dimensions, and
it produces a much smaller dimensional space, making pro-
cessing more efficient. For a projected point x ′ is ith feature
is x ′i = |x | cosθi , where θi is the angle between x and the
random vector used for projection. As long as cosθi , 0, the
relative ordering of points in dimension i does not change
and the binning process is not negatively impacted.

(2) Assigning a key to a point. Given the ith point x ′i , we denote
it’s jth feature, for i ≤ M, j ≤ Nrp as x ′i, j . For a predefined
maximum depth dmax , and for a predetermined space range
[rmin , rmax ]; xi, j is assigned a key. This key is calculated
by concatenating the bin label bd corresponding to rmin +

b
(
rmax−rmin

2d′
)
, if x ′i, j ∈ bd for d = 1 to dmax . Each point

is identified by a key and assigned to a hierarchy of bins.
As more points are seen by the system, either as a batch or
as a stream, bins update their density in the form of a local
histogram.

(3) Communicating binning histograms. For every dimension in
the projected sub-space, KeyBin2 computes at most dmax
binning histograms. The histograms are communicated back

to a central location where the clustering assignment is made.
In practice we have observed that for convex problems, 2 to
4 histograms per dimension suffice to accurately clustering
the data. As noted in [13], this communication step does
not necessarily have to be made to a central authority. The
algorithm works as well for a ring topology.

(4) Partitioning binning histograms. In order to consolidate an in-
tegrated view of the data, binning histograms are partitioned
by their modes. This process uses discrete optimization iden-
tify inflexion points in the underlying data distribution and
to maximize the inter-clustering distance while minimizing
intra-clustering distance. However, still no pairwise distance
is computed and all of the operations are performed only
through the histograms. The partitions are broadcast back
to the data collection sites, processes, or nodes.

(5) Performing clustering assignments. Once binning histograms
are partitioned, primary clusters are locally built. Primary
clusters are sets of bins organized in a partial clustering
assignment for a single dimension. Primary clusters are anal-
ogous to a space map where keys can be directly assigned to
form global clusters. Every point can be mapped to a specific
set of primary clusters in all of its dimensions, leading to a
final global clustering assignment.

(6) Assessing projected sub-spaces. Before finally accepting a clus-
tering assignment and because the randomly projected data
may or may not exhibit a separable behavior, we perform
bootstrapping. During the analysis phase we calculate the
within- and between-cluster dispersion. Our goal is to select
the projection that produces the most compact and separable
clusters. This evaluation is performed only on the binning
histograms rather than the input points and therefore it
scales independently of the input size.

Steps 2, 3, and 5 were first introduced in KeyBin version 1. Thus,
for additional details and discussions, please refer to its publication
in [13]. Steps 1, 4, and 6 are specific improvements for KeyBin2 and
will be explained in further detail in the remainder of this section.

3.1 Projecting into a Lower Space
To address KeyBin’s limitations in orthogonality assumption and
the projection overlapping, we use linear Random Projections [1, 9,
17, 18] to transform the original data into multiple, lower dimen-
sional spaces. A random projection is a mapping f : DN ⇒ DNrp

from an original N -dimensional space into Nrp dimensions. In
high dimensional spaces, there are a large number of orthogonal
vectors[9]. If column vectors inA are close to orthogonal, the trans-
formation reduces the dimensionality and rotates the data points, all
while preserving their lengths and angles. To illustrate the rotation
effect, we show two clusters in a 2D space in figure1. The original
data points (a) are correlated and exhibit a projection overlapping in
both of their dimensions. In these conditions, our previous method
would not have been able to separate the two clusters. The other
5 sub-figures (b, c,d, e, f ) depict 5 different random projections of
the original data. Projections b and c are able to decorrelate the
data, but d and f exacerbate the problem.

The most widely used way to project data into a lower dimen-
sional orthogonal subspace, capturing as much variation of the
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Figure 1: (a) original 2D data points. (b)-(f) projected points
in space.

data as possible for the chosen Nrp is principal component analysis
(PCA) [34]. However, PCA is expensive, even when using a singular
value decomposition. Its time complexity is O(NcM), where N and
M are the number of dimensions and number of points respectively,
and c is the average number of non-zero values per column. For the
projection method to work at scale, it needs to be independent of
the number of points in the dataset. By randomly constructing pro-
jection matrices, the time complexity only depends on N , Nrp and
a constant C . To construct our projection matrix first we need to
determine the target dimension size Nrp . Unlike the bound of lower
dimensionality proposed by Daspupa.el [18], which states that the
lower bound of reduced dimensionality is 4(ϵ2/3 − ϵ3)−1ln(N ) to
preserve internal distances within an arbitrary error ϵ ; we argue
that our algorithm is able to handle even lower dimensions because
it does not rely on pairwise distances preserved to some bounded
range.

The process is as follows: to change the basis of the original fea-
ture space into a lower dimension, we use a transformation matrix
that columns vectors are unit vectors. Consider x = (x1,x2, ..,xN ),
a data point in the original feature space RN , and the transforma-
tion matrix:

A(N×Nrp ) =
[
a1 a2 a3 . . . aNrp

]
where a1, ..aNrp are unit column vectors. Then the data point x
is projected to x ′ = (x ′1,x

′
2, ..,x

′
Nrp

) with Nrp << N . Let θ be the
angle between x and a1, then the new coordinate x ′1 = |x | cosθ .
The binning histogram we build on this new dimension1 reflects
how data points are ordered along the direction of vector a1.

The lower bound of dimensionality proposed by Dasgupta [18]
aims to preserve the pairwise distance of data points within an arbi-
trary error ϵ . This distance-preserving condition is very important
to algorithms such as K nearest neighbors. As KeyBin does not de-
pend on actual pairwise distance computations, the only necessary
condition of the projection is that the ordering along some column
vector ai provides a decent spread of the data points. The optimal
reduction is challenging to estimate because we do not know the

intrinsic dimension of the original feature space. Recall that one
of the constraints that we established for our algorithm is that it
should scale to very large datasets and also work for streams. Thus,
computing for example the covariance matrix is strictly off limits.

Then, assuming that the dataset D has an intrinsic dimension
R, with R < N , where N − R are redundant, noisy or uninforma-
tive dimensions. Without replacement, we want to select z = Nrp
useful projected dimensions. The probability P(Z = z) follows
the hypergeometric distribution. The lower bound of the target
dimensionality reduction should satisfy that at least one separa-
ble dimension is selected. The expectation of this distribution is
E(Z ) = Nrp · R

N . This means we want Nrp ≥ N
R .

P(z) =



( R
Nrp )
( N
Nrp )

when Nrp < R

( N−R
Nrp−R)
( N
Nrp )

when Nrp ≥ R

(1)

Although we do not know the exact values for R and Nrp , in the
first case we want the probability of P(z = Nrp ) to be high, and
in the second case, we want the probability of P(z = Nrp − R) to
be low. In both cases, we want Nrp to be small. Thus, we choose a
logarithmic growth for the determination of Nrp = 1.5loд(N ) as a
reasonable small number, which empirically achieves good results.

After calculating a projection matrix for the specific dataset,
every data point is projected into the lower dimensional space. In
this new space, a key is computed (as explained in Step 2) and
used to update the binning histogram for each new dimension.
These steps are fully parallel, per data point and per dimension,
as long as each point has access to the projection matrix. If data
is being processed in batches, then histograms are communicated
after a batch is over. If data is processed as a stream, histograms are
communicated periodically (i.e., after a number of updates, or after
a specific period of time). Once histograms are collected, statistically
anomalous dimensions are identified with the Kolmogorov-Smirnov
test [39] and collapsed. The following step consists of identifying a
partition in the histogram space and broadcasting out to the nodes,
processes, or distributed sites.

3.2 Partitioning Binning Histograms
A key aspect of our binning approach is that the size of the bins
directly affects the accuracy of our method. Bins that are too large
can easily confound a multimodal distribution. Bins that are too
small can result in an artificially inflated number of clusters. Be-
cause of this, we produce multiple histograms with different bin
sizes. Still, a key question for our algorithm is: based on the binning
density, how do we partition a specific dimension?. For the original
KeyBin, the previous heuristic to find partitioning locations was
based on a density threshold, which is not robust under streaming
scenarios, or when the size of the data and expected densities are
difficult to estimate. In turn, a necessary extension was needed in
the partitioning mechanism.

KeyBin’s histograms represent discrete approximations to the un-
derlying probability distributions observed across each dimension
of the distributed datasets. To optimize the dimension partitioning,
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it is important to find a smoothed representation of said probabil-
ity distributions. The first step is to merge all of the histograms
collected from the distributed sites. Approximating the probability
distribution is not trivial; the number of modes in the distribu-
tion and their shape is not known in advance, and it is expected
that noise and confounding factors will be present. We perform a
non-parametric discrete optimization to determine points in the 1-
dimensional space of histograms where the density of the different
distributions is minimized. To this end, we smooth possible noise
in the histogram by applying a moving average model that uses a
window size equal to the square root of the number of bins in the
histogram (w = 2

√
loд22(M)). For each window and its neighbors,

we apply local regression. The first derivative determines the slope
of the tangent line of the linear function at the specific bin. The
second derivative identifies the inflection points in the function,
indicating regions of sudden change. Once a partition is decided per
every dimension, this information is broadcast to the processing
nodes, which use it along with the points’ keys to perform a global
clustering assignment, as was done in the previous version [13].

The kernel density estimation (KDE) [56] is an alternativemethod
that can produce an approximation of the true probability density
function. The estimated distribution curves are continuous and dif-
ferentiable. DENCLUE [27] provides a method to do this, but needs
to compute pairwise distances between all data points to find the
influence of each data point. Our simpler method reaches similar
accuracy compared to KDE curves, but our smoothing technique is
much faster than the kernel density estimation.

3.3 Assessing Projected Subspaces
As illustrated in Section 3.1, some projections are better than others
and there is always the possibility of encountering a pathologi-
cal transformation. To rate clustering models, we use a modified
version of the Calinksi-Harabaz [10] index, which is the ratio of
between-cluster dispersion and within-cluster dispersion. The tra-
ditional computation of this index involves computing pairwise
distances between cluster centroids and the points assigned to them.
For scalability reasons, we avoid pairwise distance computation
involving the data points and instead rely solely on the histogram
and keys’ space. Recall that a point is identified by a key. This key
corresponds to the set of bins to which the point belongs to in all
of its dimensions (e.g., if point x belongs to bin 35 in dimension 1,
64 in dimension 2 and 06 in dimension 3 its key is simply "356406").
Global clusters are formed by a range of bins in each dimension.
This set of bins is found by the partitioning mechanism discussed
in Section 3.2. For a set Q of global clusters and a specific cluster
Cq ∈ Q , the value of Calinski-Harabaz index can be calculated
using only the the keys and density of each bin b ∈ Bins with the
following equations [10]:

cal =

[
BQ

WQ

]
×
[
|Bins | − |Q |
|Q | − 1

]
× loд2(|Q | − 1) (2a)

WQ =
∑
q∈Q

∑
j

∑
b ∈Cq

(b[j ] − cq [j ])2 × Densityb [j ] (2b)

BQ =
∑
q∈Q

∑
j
(cq [j ] − c[j ])2 ×

∑
b ∈Cq

Densityb [j ] (2c)

Where j denotes a specific dimension, b[j ] and Densityb [j ] are the
key of bin b and its density in dimension j respectively. cq refers
to the center of a local cluster Cq and c refers to the global center
in the dataset, calculated by finding bins corresponding to the 50th
percentile in each dimension.

Figure 2 is an intuitive view of what this process entails. The
figure depicts a 2-dimensional space consisting of 6 clusters. His-
tograms for each dimension are shown top and right of the figure.
The grid inside of the space represents the specific partitions found
by KeyBin2. For a specific cluster Cq , we identify the range of
bins in each dimension belonging to Cq. Within this range, we
identify the cluster’s centroid given by the histograms modes. The
within-cluster dispersionWq is computed by summing the square
difference between each bin and the cluster’s centroid, multiplied
against the density of that bin. This process is repeated for every
dimension. To calculate the between-cluster dispersion the opera-
tions are similar; in this case, the difference is calculated between
each cluster’s centroid cq and the dataset center c . The center c
is found by calculating the 50th percentile of the histogram in
each dimension. Again, it is important to note that this process is
performed completely on the histogram’s space and is therefore
scalable; calculations do not involve comparisons between data
points.

Figure 2: Assessing projection subspaces in a 2-dimensional
example

3.4 Complexity Analysis
The entire KeyBin2 algorithm breaks down into three major steps:
(1) projecting the data, (2) computing the keys and updating bins,
and (3) collapsing dimensions and computing partitions. The overall
time complexity is the summed complexity of each step multiplied
by the number of bootstrapping. In [14], we determined that the
time complexity to assigning keys toM points with N dimensions,
whenwe use B bins isO(MNloдB). As we reduce the dimensionality
from N to Nrp = 1.5loдN , the number of bins turns B = loдM and
the complexity of building keys is O(MloдNloдloдM) and building
histograms isO(Mloд2N ). Before reducing dimensionality, we need
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to project the data using a random matrix. The time complexity for
this step is O(MNNrp ) = O(MNloдN ).M in those operations can
be combined, as every point needs to be read once, then multiplied
by the random matrix to reduce its dimensionality, and assigned a
key. After that, the point can be either discarded or sent to secondary
storage awaiting its final clustering assignment.

Partitioning histograms, which entails smoothing, differentiat-
ing, and finding cuttings, isO(NrpBw) = O(loдNloд2M). Bootstrap-
ping iterates over the previous two steps, in addition to evaluat-
ing the cluster assignment up to a number of t trials. The eval-
uation step takes two passes over the histogram - one to find
the centroids, and one to calculate the dispersions, with a time
complexity of O(B) O(loд2N ). Finally, assigning clusters for the
whole dataset is O(MNrp ); one pass to concatenate keys gener-
ated in previous steps and another pass to aggregate points with
the same key to form clusters. The time complexity for labeling
is O(MNrp ) = O(MloдN ). In summary, the time complexity for
KeyBin2 is t × [O(MloдNloдloдN ) +O(loдNloд2M) +O(loд2N )] +
O(MloдN ). Further optimization would perform t simultaneous
random projections to M points, taking out M from the t boot-
strapping steps. The communication cost between K locations is
O(2KNrpB). With the reduced dimensionality Nrp and the number
of bins B, the required communication is as small as several Kbytes.

3.5 Implementation Details
For the implementation of KeyBin2, we use a master-worker topol-
ogy and mpi4py[16] to establish communication between processes.
Each process generates a fraction of the data and leverages the GPU
to assign keys to projected data points and build histograms on
each dimension. This step is done in parallel per data point and
per dimension. We accelerate this part of the computation with
Numba[36], an LLVM-based compiler that enables Python to use
CUDA[45]. When histograms are completed, they are communi-
cated to the master process, which reduces the information, com-
putes global densities, and broadcasts the aggregated information
back. With the aggregated histograms, workers utilize the GPU
again to find a final clustering labels for the reduced data points.
The code, datasets, and documentation for everything are available
online at: https://lobogit.unm.edu/DataSci/keybin2.git.

4 EVALUATION
To evaluate KeyBin2, we compared its performance (i.e., scalabil-
ity and accuracy) to other well-known and widely-used clustering
algorithms: (1) K-means++, an optimized version of the popular
K-means algorithm from scikit-learn 0.17.1. (2) parallel-kmeans
by [38], which has been shown to achieve speedup by distributing
the entire dataset into many MPI ranks. (3) PDSDBSCAN [47], an
HPC implementation of DBSCAN. We also attempted a compari-
son with the GPU implementation of MAFIA (GPUMAFIA [11]),
however GPUMAFIA was unable to converge under our particular
setup.

We present two sets of experiments: first, we measure scalability
as a function of the number of dimensions. For our second experi-
ment, we measure scalability as the number of points and processes
grow. Most parallel clustering approaches report scalability, but
as clustering is an unsupervised learning algorithm, they almost

never report accuracy. To avoid this pitfall, we were sure to use clas-
sification problems for our tests and then quantify the clustering
accuracy. We report precision, recall, and f1-score. In the clustering
context, precision is the ratio tp/(tp + f p) where tp is the number
of true positives (i.e., point pairs assigned to same clusters that ac-
tually belong to same clusters) and f p the number of false positives
(i.e., point pairs assigned to same clusters that do not belong to
same clusters). The precision is the ability of the clustering not to
assign a point to a cluster C that does not belong to it. Recall is
the ratio tp/(tp + f n) where f n the number of false negatives (i.e.,
the number of point pairs that belong to same clusters were not
identified as same clusters). Recall is the ability to find all the data
points that belong to a cluster. The f-score is the harmonic mean of
precision and recall.

Our experiments ran on the Xena cluster at the Center for Ad-
vanced Research Computing of the University of NewMexico. Xena
is a PowerEdge R730 / Intel Xeon CPU E5-2640 at 2.6 GHZ with
32 nodes, 16 cores per node, Infiniband interconnect, and 4GB of
RAM per core. Each also has a NVIDIA Tesla K40m graphic card.

In the following experiments, we test scalability. Synthetic data
is generated from 4 mixed Gaussian distributions with a diagonal
covariance matrix. The data is produced and stored on K MPI pro-
cesses. Our first experiment test how KeyBin2 scales with regards to
the dataset size. We fix the number of processes to 16 and increase
the dimensionality of the data from 20 to 1280 at intervals of 4× (see
table 1). In the second experiment, we fix the dimensionality of the
data to 1280 dimensions and we perform a doubling experiment by
increasing the number of MPI processes from 1 to 16. The amount
of data doubles too, as each process handles 80,000 points (see ta-
ble 2. In both experiments, we provide the true number of clusters
k = 4 to kmeans++ and parallel-kmeans, so they always find the
correct number of clusters. Similarly, we provide the optimal ϵ and
minPoint parameters to PDSDBSCAN[47]. We report confidence
intervals for 20 independent runs per each experimental design
point.

For some of the runs, wewere unable to get results from kmeans++
and pdsdbscan because they would crash from memory issues. Ta-
ble 1 does not include results for pdsdbscan because it could not
handle more than 100,000 points. Table 2 does not include results
for kmeans++ because it stopped converging with as little as 100
dimensions. For both runs we can see that KeyBin2’s scalability
is linear and grows slower than parallel-kmeans (except when the
number of dimensions is very small, e.g., 20).

In terms of accuracy, KeyBin2 finds a larger number of clusters
than the ground truth number. Recall that we provided the correct
number of clusters to kmeans++ and parallel-kmeans and the opti-
mal parameters to PDSDBSCAN. This information was not made
available to our KeyBin2 algorithm, as it is non-parametric. KeyBin2
found a larger number of clusters, but some of them were small
outliers from noise in the data. In more detail, we observe that, as
problems become larger (i.e., increasing dimensions or increasing
data points), KeyBin2’s recall and precision both drop. This indi-
cates the ordering of data points becomes more ambiguous in high
dimensional spaces (i.e, points are lying in a thin shell [2, 8, 17])
and the effect of the Calinski-Harabaz index to accurately select
the best model is decreasing. Still, KeyBin2 outperforms the other
methods as shown by the F1 scores.
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Table 1: 1.28 million data points on 16 MPI processes (80,000 per proc.)

Method Clusters Recall Precision F1 score Time (sec)
20 dimensions

KeyBin2 7.37 ± 1.49 0.836± 0.04 0.929± 0.05 0.877± 0.03 42.11± 2.21
kmeans++ 4.0± 0 0.714± 0.01 1.0± 0 0.829± 0.01 509.12 ± 5.94
parallel-kmeans 4.0± 0 0.724± 0 1.0± 0 0.840± 0 20.01 ± 0.81

80 dimensions
KeyBin2 9.73 ± 2.48 0.828± 0.07 0.990± 0.01 0.898± 0.04 45.31 ± 2.07
kmeans++ 3.0± 0 0.692± 0.01 1.0± 0 0.815± 0.08 638.26 ± 8.0
parallel-kmeans 4.0± 0 0.871± 0 0.613± 0 0.719± 0 58.90 ± 5.08

320 dimensions
KeyBin2 10.07 ± 1.75 0.752± 0.05 0.955± 0.02 0.838± 0.04 58.26 ± 4.50
kmeans++ – – – – –
parallel-kmeans 4.0± 0 0.695± 0 0.627± 0 0.659± 0 200.90 ± 20.60

1280 dimensions
KeyBin2 11.00 ± 1.41 0.774± 0.04 0.967± 0.02 0.857± 0.03 285.20 ± 22.25
kmeans++ – – – – –
parallel-kmeans 4.0± 0 0.557± 0.0 0.574± 0.0 0.565± 0.0 1086.85 ± 35.27

Table 2: 1280-dimensional data points on multiple MPI processes (80,000 per proc.)

Method Clusters Recall Precision F1 score Time (sec)
1 process (80,000 data points)

KeyBin2 10.40 ± 2.57 0.850± 0.09 0.991± 0.01 0.912± 0.06 20.75 ± 1.66
parallel-kmeans 4.0± 0 0.831± 0.15 0.962± 0.06 0.879± 0.07 62.34 ± 9.38
pdsdbscan 1.0± 0.0 1.0± 0.0 0.286± 0.0 0.445± 0.0 1816.20 ± 148.20

2 processes (160,000 data points)
KeyBin2 12.00 ± 3.16 0.797± 0.05 0.978± 0.01 0.877± 0.03 28.58 ± 2.79
parallel-kmeans 4.0± 0 0.698± 0.09 1.0± 0.0 0.819± 0.05 151.77 ± 25.34
pdsdbscan – – – – –

4 processes (320,000 data points)
KeyBin2 12.40 ± 2.05 0.766± 0.03 0.982± 0.01 0.860± 0.02 38.83 ± 5.19
parallel-kmeans 4.0± 0 0.491± 0.09 1.0± 0.0 0.654± 0.07 199.06 ± 5.19
pdsdbscan – – – – –

8 processes (640,000 data points)
KeyBin2 13.50 ± 4.33 0.775± 0.09 0.981± 0.02 0.861± 0.06 57.41 ± 16.01
parallel-kmeans 4.0± 0.0 0.694± 0.05 1.0± 0.0 0.818 ± 0.03 398.08 ± 5.82
pdsdbscan – – – – –

16 processes (1,280,000 data points)
KeyBin2 9.50 ± 0.50 0.827± 0.01 0.977± 0.01 0.891± 0.06 285.20 ± 22.25
parallel-kmeans 4.0± 0 0.557± 0.0 0.574± 0.0 0.565± 0.0 1086.85 ± 35.27
pdsdbscan – – – – –

5 IN-SITU ANALYSIS OF PROTEIN FOLDING
To test the applicability of KeyBin2 to a challenging in-situ analysis,
we apply it to protein folding trajectories. Protein folding simu-
lations search for trajectories leading to conformations close to
the native (folded) protein structure originating from an unfolded
conformation. During the folding process, the protein changes
its conformations into what are called meta-stable and transition
stages [4]. In a metastable stage, consecutive protein conformations
keep a similar structure and display only small variations. In a tran-
sition stage, consecutive protein conformations change from one
meta-stable stage to another and exhibit large structural variations.

In order to identify these stages, it is important to identify when
one or multiple trajectories eventually converge to the same con-
formation. Work has been done to understand intra-trajectory and
inter-trajectory convergence. These studies [7, 51, 58, 60] explore
multiple folding trajectory spaces in parallel and determine what
conformations are more likely to be stable.

Computational trajectory analysis usually performs a large scale
comparison of trajectory frames, constructing a centralized dis-
similarity matrix using all the trajectory data, reducing the dimen-
sionality of the matrix, and then clustering the low dimensional
matrix. The centralized nature of the algorithms in Best el al. [7]
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and Phillips et al. [51] makes their analysis inefficient when deal-
ing with large proteins and long trajectories. Other work in [58]
analyzes simple statistical data of long trajectories at a very large
scale. Our previous work [33, 60] deals with this issue in a local
to global fashion, rendering the parallel analysis very efficient for
large datasets and is suitable for in-situ analysis.

We used 31 simulated protein folding trajectories from MoDEL,
the Molecular Dynamics Extended Library [43]. MoDEL is a large
library of molecular dynamics trajectories of representative protein
structures. Trajectories of all monomeric soluble structures have
been studied by means of state-of-the-art atomistic molecular dy-
namics simulations in near-physiological conditions. Trajectories
used for our analysis range from 2,000 to 20,000 time steps (i.e,
number of data pointsM) and from 58 to 747 residues (i.e., number
of dimensions N ). Table 3 shows their characteristics.

Table 3: Characteristics of 31 MoDEL Trajectories

Characteristic Mean Stdev Min Max
Number of residues 193.06 145.29 58 747
Simulation time (ps) 9,779.03 3,425.85 2,000 20,000

5.1 Trajectory analysis
We perform the protein folding trajectory analysis as if it was a
clustering problem. Simulations can be performed in parallel, with
different nodes taking care of different segments of a trajectory,
or, more accurately, different trajectories given particular starting
conditions. As simulations progress, in-situ analysis is necessary
to determine what conformational spaces have been analyzed and
whether the current conformation is stable or transitional. To per-
form this analysis in parallel, we characterize each conformation
(i.e., a specific conformation associated with a trajectory frame)
by its collection of secondary structures given the Ramachandran
plot [53]. That is, every residue was characterized by the torsion
angle phi, ϕ, (angle between the C-N-CA-C atoms) versus the tor-
sion angle psi,ψ , (angle between the N-CA-C-N atoms), and omega
ω (usually restricted to be 180 deg for the typical trans case or
0 deg for the rare cis case). Based on the constraints of the torsion
angles (ϕ, ψ , and ω) as described by the Ramachandran, we can
associate each amino acid residue in the protein with one of six
types of secondary structures: α-helix, β-strand, Polyproline PII-
helix, γ ′-turn, γ -turn, and cis-peptide bonds. As a protein folds and
unfolds over time, its residues may participate in very different
types of secondary structures, but if conformations are revisited
over time, they should cluster together. We hypothesize that by
clustering secondary structures, multiple fine grained clusters asso-
ciated with specific secondary structure transformations will arise
over time. Sequences of fine grained clusters will form a cluster
fingerprint. This fingerprint can be used to identify stable phases
and to differentiate conformational search spaces.

5.2 Results
Quantitative evaluation. The first evaluation of KeyBin2 for fold-
ing trajectories measures clustering time. As shown by figure 3

KeyBin2’s overhead is very small. Given the size of the data (num-
ber of dimensions times number of data points), KeyBin2’s time
is around 4 seconds in total, or 0.0004 seconds per frame. It’s exe-
cution time is much smaller than the other algorithms. Given its
small overhead and its parallel nature, KeyBin2 can be seamlessly
used for in-situ analysis.

Figure 3: Execution time for clustering protein trajectories.

Qualitative evaluation. To show how KeyBin2’s clustering
output can be used to differentiate conformational search spaces, we
validated our method using an offline probabilistic approach. After
a trajectory is completed, we selected N distinct conformations
sampled by using a power law distribution with respect to the
distance to the mean conformation. This setup is designed to find
a set of diverse representative conformations along the trajectory.
For each of them, we compute the root mean squared deviation
with respect to each frame in the trajectory. Given a set of root
mean squared deviation time series, we preprocessed the data by
converting the distance measures into probabilities that a particular
time step (i.e., frame) of the trajectory is a given conformation.

Pr (l is stable at i |l ∈ L,dk,i ∈ Di ) =
1/dl,i∑N

k=1 1/dk,i
, (3)

where L is the set of N distinct conformations and Di is the set
of distance measures for each conformation at frame i . We then
create a probability distribution of stability for each representative
conformation, which for simplicity we denote as a label, at time
step i using the previous 100 time steps. Using the probability
distributions, we calculate the center of the 70%High Density Region
(HDR) for each label. This generates a score of stability ranging
from 0 to 1 for each label at time step i , where 1 indicates high label
stability and 0 indicates low stability. To determine if frame i is not
stable we compare the two highest label stability scores as follows,

Stability(sp,i , sq,i ,w) =
{
sp,i − sq,i < w, not stable

otherwise, p is stable
, (4)

wherew is a predefined threshold, p,q ∈ L, sl,i is the stability score
of label l at frame i , and label p has the higher stability score at
frame i .
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Six meta-stable phases found by the validation process

Representative conformations found by KeyBin2 for each meta-stable phase

Cluster fingerprints

Figure 4: Qualitative clustering validation for 10,000 frames of trajectory 1a70. Rectangles represent stable segments, se-
quences of vertical dots represent cluster fingerprints and denote a specific conformational search

Figure 4 shows an example of how our clustering results can
be used to differentiate conformational search spaces, while at the
same time using this information to identify stable versus tran-
sitional conformations. The figure shows six meta-stable phases
identified by the probabilistic approach and denoted by rectan-
gles. It also shows the clustering fingerprints (i.e., each sequence
of vertical dots) produced by KeyBin2. In the figure it is possible
to visually inspect when clustering fingerprints change over time
and how they correspond to the different meta-stable phases. The
clustering fingerprints provide a richer set of information that can
be used to extend the trajectory analysis with a more fine grained
understanding of the different structural changes of a conformation.

6 CONCLUSIONS
In this paper we present the improved binning-based clustering
algorithm KeyBin2. This parallel clustering algorithm uses boot-
strapping and random projection methods to overcome limitations
our previous method (KeyBin). The rotation effect of random projec-
tions helps to separate overlapping clusters as well as to deal with
non orthogonal dimensions. In this version, we use discrete opti-
mization to determining partitions in an non-parametric way, thus
producingmore robust clustering results.With these improvements,
KeyBin2 improves scalability and can deal with more complex data
than its predecessor. Experiments show that our algorithm scales
linearly when the number of data points or as the dimensionality
increases. In its current form, KeyBin2 can be used for unsupervised
learning of streaming data on distributed locations without moving
large data quantities to a centralized place. Finally, we show the
applicability of KeyBin2 for in-situ analysis of folding trajectories.
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