
TensorViz: Visualizing the Training of
Convolutional Neural Network Using Paraview

Xinyu Chen1,3, Qiang Guan3, Xin Liang2,3, Li-Ta Lo3, Trilce Estrada1 and James Ahrens3
1. University of New Mexico, USA

2. University of California, Riverside, USA
3. Los Alamos National Laboratory, USA

LA-UR-17-26748
Correspondence: xychen@cs.unm.edu

Problem
Deep Convolutional Networks have been very successful in visual recognition tasks
recently. Lots of previous works aimed to help people to get senses of why those
biology-inspired networks achieved such good performances. Deconvnet[1], Guided
propagation[2] and a comprehensive visualization tool box[3] can help people to see fea-
tures learned at different layers of the networks. These works in some extent provided
understanding and support for the biology origin of how convolutional networks emulate
visual recognition tasks. However, due to the complexity of searching in very high dimen-
sional parameter space, the whole training remains in black-boxes. Normally a large net-
work needs weeks of training on high-end graphic cards. Fine-tuning of hyper-parameters
like the learning rate, depth and width of the network still depends on previous successful
architectures or trial and error. In this poster, we study the network as a dynamic system
and its learning process as the evolution of parameters. By visualization of the development
and evolution of network, we aim to provide facilities to find optimal hyper-parameters.

Figure 1: (left)We treat the Convolutional Networks (similar to LeNet-5[4]) as a dynamic system. We visual-
ize the evolution of weights of two convolution layers during the training. The first and second convolution
layer contain 16 and 32 3 × 3 filters respectively. The fully connected layer contains 1024 neurons. (right)The
network learns MNIST dataset which contains 55, 000 training samples, 5, 000 validation samples and 10, 000
testing samples.

Concepts, Dataset and Tools
Some basic concepts are:
◦ Neuron: A unit that receives values from predecessors and outputs a value to successors.
◦ Weight: A value that defines how units are connected.
◦ Activation: The value computed from a non-linear function.
◦ Loss: The difference between the network’s prediction and true value.
◦ Gradient: A value indicate how to adjust weights during training.
◦ Convolutional Networks(Fig.1): networks with convolutional and fully connected layers.

We built simple convolutional networks with different hyper-parameters. The architecture
is similar to the LeNet-5. The networks were trained on the MNIST dataset to learn hand-
written digits. They can achieve 99.2% accuracy after about 16 epochs of training.

We use Paraview and Python matplotlib to visualize the evolution of weights, gradient,
activation and loss.

Visualize Weights
Fig.-2 From left to right, Paraview shows the evolution of the weights of 16 3× 3 first layer
convolution filters in one of the networks at 0, 4k and 8k steps. Each box represents a weight
and each 3×3 block represents a filter. The height along z-axis represents the numeric value
of weights. To make the changes more obvious, we also colored the weight. Red is more
positive, blue is more negative.

Figure 2: Visualization of first layer convolution filters in Paraview.

We did not map convolution filters back to image patches like Deconvnet[1] or Guided
propagation [2], but display the process of their evolution. In cases when learning rate is
too high, the adjustment of weights would stuck within a short period of time. By visu-
alizing the changes of convolution filter weights, we observed that colors tends to become
darker during training. Boxes seldom change from blue to red or vice versa. This leads us
to the visualization of their L2norms.

Visualize L2norms

Figure 3: Visualization the evolution during training on previous network for 10 epochs(5.5k steps). Left:
L2norms in different layers. Line1 to Line4 are convolution weights,fully connected weights, convolution
gradients and fully connected gradients. Right: Visualization of first 2 dimensions of convolution weights. It
looks like a random walk.

Fig.-3 shows an alternative view of weights and gradients. We concatenate weights and
treat them like long weight vectors in each layer. In left graph, line1 and 2 show L2norms’
growth roughly related with the square root of time steps. Line3 and 4 show gradients are
roughly following some random distributions. The right graph roughly describes how a
weight vector searches the parameter space. Although we only use the first 2 dimensions
to show positions of a weight vector, it suffices to demonstrate the searching process. The
color indicates time steps in training. We can examine our observation against how net-
works update their weights [4].

W (t + 1) = W (t)− η
∂Et

∂W
(1)

Visualize Activations

Figure 4: Top left: Activation of first layer convolution filters. Top right: Heatmap of first layer filters’ corre-
lation. Bottom left: Activation of second layer convolution filters. Top right: Heatmap of second layer filters’
correlation.

From Fig.-4 we can see similar activations in both convolution layers. This suggests the
redundancy of convolution filters. The heatmaps illustrates Pearsons’ correlation between
convolution filters. The heatmap can be used for reduction of such filters.

Filter Reduction

Figure 5: During training, we use Pearsons’ correlation to merge the weight of similar filters. We use color to
indicate similarities. Start from 16 filters in top left, after 20 epochs, we reduced to 12 filters in bottom right.

Fig.-5 shows reduction of similar filters. The accuracy of reduced networks is 99.12%, re-
mains the same as the original network. In learning the relative simple MNIST dataset,
the reduction of filters does not affect training time. However, we expect a more beneficial
effect in larger networks.

Summary
In this poster, we presented several attempts in using Paraview to visualize and analyze
the training of deep convolution networks. We have found interesting evolution of weights
and gradient. Finally, the visualization of activation encourages us to merge similar filters
and reduce the architecture during the training. Because Paraview supports in-situ analyt-
ics, it is possible setup an interactive mechanism to facilitate the training of more complex
networks in the future.

Acknowledgments
The authors would like to thank the Data Science at Scale summer school in the Los Alamos National Laboratory.

References
[1] Zeiler, Matthew D., and Rob Fergus. ”Visualizing and understanding convolutional networks.” European conference on computer vision. Springer, Cham, 2014.
[2] Springenberg, Jost Tobias, et al. ”Striving for simplicity: The all convolutional net.” arXiv preprint arXiv:1412.6806 (2014).
[3] Yosinski, Jason, et al. ”Understanding neural networks through deep visualization.” arXiv preprint arXiv:1506.06579 (2015).
[4] LeCun, Yann, et al. ”Gradient-based learning applied to document recognition.” Proceedings of the IEEE 86.11 (1998): 2278-2324.


