TensorView: Visualizing the Training of Convolutional Neural
Network Using Paraview

Xinyu Chen Qiang Guan Xin Liang
University of New Mexico Los Alamos National Laboratory University of California, Riverside
xychen@cs.unm.edu qguan@lanl.gov xlian007 @ucr.edu
Li-Ta Lo Simon Su Trilce Estrada
Los Alamos National Laboratory US Army Research Laboratory University of New Mexico
ollie@lanl.gov simon.m.su.civ@mail.mil estrada@cs.unm.edu

James Ahrens
Los Alamos National Laboratory
ahrens@lanl.gov

ABSTRACT

Convolutional Neural Networks(CNNs) have been widely used in
visual recognition tasks recently. Previous works visualize learn-
ing features at different layers to help people to understand how
CNNs learn visual recognition tasks. However they only provide
qualitative description and do not help to accelerate the training
process. We present TensorView to enable Paraview to visualize
the evolution of CNNs. TensorView provides both qualitative and
quantitative visualization that help understand the learning proce-
dure, tune the learning parameters, direct merging and pruning of
neural networks.

CCS CONCEPTS

+ Human-centered computing — Information visualization;
« Computing methodologies — Neural networks;

KEYWORDS
Visualization, Convolutional Networks, Paraview

ACM Reference Format:

Xinyu Chen, Qiang Guan, Xin Liang, Li-Ta Lo, Simon Su, Trilce Estrada,
and James Ahrens. 2017. TensorView: Visualizing the Training of Convo-
lutional Neural Network Using Paraview. In DIDL’17: DIDL’17: Workshop
on Distributed Infrastructures for Deep Learning, December 11-15, 2017, Las
Vegas, NV, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3154842.3154846

1 INTRODUCTION

Since AlexNet’s [9] impressive achievement in the ILSVRC2012,
Deep Convolutional Neural Networks (convnets or CNNs) have
been used successfully for increasingly complex visual recognition
and natural language processing tasks. The state-of-art CNNs, like

I The publication has been assigned the LANL identifier LA-UR-17-27408.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5169-0/17/12...$15.00
https://doi.org/10.1145/3154842.3154846

ResNet [6], contain hundreds of layers and achieve accuracy that
outperforms human players. Despite the promising performance in
achieving higher and higher accuracy, training a deep convolutional
neural network is always challenging because of the complexity in
searching the optimal parameters in very high dimensional spaces.
The amount of trainable parameters is so large (431k in LeNet-5,
61M in AlexNet) [5] that training a real-world convolutional neural
network is expensive. Normally they need weeks of training on
high-end GPUs. Besides the great volume of trainable parameters,
practitioners also need to carefully choose hyper-parameters such
as learning rates, various types of optimizers, the depth and width of
networks. Often a hyper-parameter has a critical effect on the length
of training time and the accuracy of the network. Sometimes, neural
networks fail to converge due to inappropriate hyper-parameters,
which are known to cause the gradient vanish or gradient explosion
problem.

Without a clear understanding of how and why CNNs work
well in visual recognition applications, fine-tuning these hyper-
parameters largely depends on previously successful architectures
or trial-and-error [16]. Here are some questions we want to answer:
Are all these neurons necessary? Can we be confident that there are
redundancies and we should remove them? Can we know gradient
vanish or explosion problems during training process?

In scientific simulations, visualization techniques have been
widely used to help scientists to get better understanding of the
results of computations and accelerate scientific discoveries. In this
paper, we present TensorView, a visualization tool which leverages
Paraview and Matplotlib to study neural networks built upon Ten-
sorFlow’s framework. We study a neural network as a dynamic
system and treat the learning process as the evolution of param-
eters. A trained neural network is made up of weights, in both
convolutional and fully connected layers, activation functions, and
gradients. By visualizing the evolution of weights and gradients, we
gain a direct observation on how the model consumes and learns
from training examples: we are able to see the neurons get updated
during training. If gradient vanishes or explodes, we can quickly see
the training stops. By visualizing activation functions, we are able
to identify similar behaviors among neurons in the convolutional
layers. This insight allows us to observe the redundancies inside
deep neural network architectures. Thus we can merge and prune

https://doi.org/10.1145/3154842.3154846
https://doi.org/10.1145/3154842.3154846
https://doi.org/10.1145/3154842.3154846

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

similar neurons while training is in progress. Our contributions are:
(1) using visualization to inform researchers in real time regarding
their hyper parameter selection, and (2) using quantitative infor-
mation to prune unnecessary neurons, speeding up the training
process.

Provide both qualitative visualization and quantitative insight to
facilitate the adaptive selection of hyper-parameters and speedup
the training process. Our goal is to reduce the training time and
memory usage during the training and visualize the process of
learning and the evolution of neural network architectures.

The rest of the paper is organized as follows. In section 2, we
discuss the related work. Some background concepts about con-
volutional neural networks are covered in section 3. We explain
the methodology in section 4. Visualization results are shown in
section 5. On-line pruning is inspired by the visualization of activa-
tion. Thus the evolution of adaptive neural network architectures
is presented in section 6. And we conclude the paper in section 7.

2 RELATED WORK

Traditionally, neural networks have been treated as black-boxes,
where learning is hard to interpret and many times it is even impos-
sible to explain. This lack of understanding results in computation-
ally expensive and time consuming trial-and-error designs. Previous
work have tried to help people to get a better understanding of why
those biology-inspired networks achieve such good performance.
Among them, Deconvnet [16], Guided propagation [13] and Deep
Visualization tool box [15] have successfully helped people to un-
derstand the learned features at different layers of the networks.
These works greatly enhance our understanding of how convo-
lutional neural networks emulate visual recognition tasks. Their
visual feature maps provide a qualitative illustration of the model.
From such feature maps we can identify edges, corners and color
patches, usually in the first convolutional layer of almost every
CNN. Yet, it is hard to find distinguishable differences between
such feature maps and Gabor filters [4] of different networks. The
feature maps do not provide us with information regarding the
suitability of hyper-parameters or the training process status.

Other attempts depict trajectories of training through the solu-
tion spaces [11], [3]. Yet their purpose is to provide information
regarding the influence of parameters in the search task, and they
do not help in accelerating the training process.

Another visualization research direction goes to providing quan-
titative analytics of neural networks. Histograms of weights, gradi-
ents and losses are used to visualize their distribution [2]. Ten-
sorboard [7] can visualize such distribution for networks built
upon TensorFlow. This can help to learn the effect of different
hyper-parameters. But most of the visualizations and analytics in
Tensorboard are post-training statistics. Tensorboard lacks on-line
analysis and tuning during training.

Besides Tensorboard’s post-training visualization tools, some
methods that post-prune the networks have been proposed to ad-
dress energy and memory concerns Denton et al. [1] [5]. To the best
of our knowledge, there is no on-line tools that can provide both
qualitative visualization and quantitative insight to facilitate the
adaptive selection of hyper-parameters and speedup the training
process.

X. Chen et al.

Paraview [8] is an open-source data analysis and visualization
application, which is used in large scale scientific simulations. It
has the capabilities of providing interactive and in-situ analysis on
extremely large datasets using distributed memory computing re-
sources. Paraview Catalyst provides abundant interfaces to support
data analysis and visualization for scientific simulation. However
it does not support visualization in machine learning so far. We are
the first to leverage Paraview’s capabilities to visualize the training
of neural networks.

Visualize Welghts of Visualize L2norm
Convolution Filters of Weights.

C1: feat C3: . maps 16@10x10
: feature maps T
INPUT

32x32 6@28x28

O

AN
Q&
Y

L RQ NPT &N
wws LWV LD

AN
/45
o/ 6
774
393
Qg2
19/
248
704
XA

o &y
S0 00 O (§
hxc

Figure 1: Outline of TensorView. Bottom network: the test-
ing architecture of a convolutional neural network. We built
a LeNet-5 with 16 and 32 filters in the convolutional lay-
ers and 512 neurons in the fully connected layer. The CNN
is trained to classify the MNIST dataset. Top left: Visual-
ization of the filters’ weights. Top middle: Visualization of
L2-norms of weights. Top right: Visualization of activation
functions.

3 BACKGROUND

We briefly cover some background concepts on the architecture of
convolutional neural networks because they are important for our
design decisions.

Artificial neural networks use massive amount of connected neu-
rons to solve complex computation problems. Artificial neurons
are computing cells that are organized into layers. Each neuron
performs a nonlinear activation function on the weighted sum of
its inputs and sends the output to neurons in the next layer. Such
outputs are also called activations. The connections between neu-
rons are represented by weight values. The currently most widely
used activation function is Rectified Linear Units (ReLU) which is
relu(x) = max(0, x).

Convolutional neural networks are one specific type of neural
networks that are very good at recognizing local structures in vision
and speech data. Besides the typical fully connected layers, they
have convolutional layers . A neuron in the convolutional layer has
a limited receptive field. For image recognition problems, the input
field normally has a 2D layout represented as a window with size
of 55 or 7X7 pixels. Sliding such a window over the input images,
the neurons perform the convolution operations to extract local
features such as edges or corners. Thus such neurons are also known
to be filters. The outputs of the these convolution operations are
feature maps which also have 2D layouts. In section 4, we describe
the method to visualize the weights and activations.

TensorView: Visualizing the Training of CNN Using Paraview

scalar
2.000e-01

0.09975

=-2.010e-01

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

Figure 2: Convolution filters in layer-1 at 0, 4k and 8k steps. Colored cubes represent weights. Red is more positive, blue is
more negative. The elevation along z-axis represents weight values too.

4 METHOD

Our method is inspired by the visualization of scientific simula-
tions. During training, the evolving weights, activations, losses
and back-propagated gradients [10] are informing us about the
training status. In the forward pass, the first convolutional layer
provides input for successor layers. On the other hand, the first
layer is the last one that gets updated in the backward pass. If the
learning is affected by gradient vanish or gradient explosion issues,
we can easily observe the problems at the first convolutional layer.
In the following sections, we focus on the visualization of the first
convolutional layer.

For the purpose of proof of concept, we use a network similar to
the LeNet-5 to learn the MNIST dataset (Fig. 1). Our CNN has 16
filters in convolutional layer; and 32 filters in convolutional layer;.
The filter size is 3 X 3. For the sake of simplicity, we reduced the
number of neurons in the fully connected layer to 512. Even with
the above simplifications, this CNN achieves 99.17% accuracy after
40 epochs of training. To visualize neural networks as dynamic sys-
tems, we display the evolution of weights, gradients and activations
during the training process.

We use colored cubes to represent weight values in visualization
of convolutional filters. In the following example, each filter has a
window size of 3 X 3 pixels. So each of them consists of 9 cubes.
The actual convolutional filters defined in TensorFlow do not have
explicit indices for their weights, we need to assign x,y coordinates
to those cubes to align them into blocks and grids for visualization.
To emphasize the evolution of weights, we map the weight values to
colors and z coordinates at the same time. First, blue color represents
negative weight values and red color represent positive weight
values. Second, cubes with positive weight values also looks higher
than cubes with negative weight values along z-axis. This double-
mapping enables us to see the color of these cubes changes and
their elevation along z-axis moves as the weights get updated after
each time-step during training.

We also use colored points to illustrate trajectories of learning
process. In this case the color represent time steps. As the training
goes on, the color changes from blue to red. In section 5, we present
the visualization of weights, trajectories, L2-norms and activation
of the convolutional filters in the first convolutional layer.

5 VISUALIZATION RESULTS

We use Paraview 5.2.0, Python Matplotlib for the visualization. The
convolutional network is built on the TensorFlow framework. All
experiments were carried out on the Darwin cluster in the Los
Alamos National Laboratory. We chose Nvidia Tesla K40m Acceler-
ator.

5.1 Visualizing Weights

In section 4 we described the method to assign x,y,z coordinates
and colors to display weights in Paraview. This is the first approach
that we use to visualize the training of a model qualitatively. In
Fig. 2 we arrange the 16 filters in convolutional layer; into 4 X 4
blocks. Although we display filters separately, we do not intend to
map them back to image patches like Deconvnet [16] or Guided
propagation [13]. Paraview can read time-series data from files and
render one image for each time step. Thus, we display the evolution
of weights as animations. In cases when learning rates are too high,
it is easy to see that the evolution of weights get stuck within a
short period of time.

5.2 Visualizing learning trajectories

From the visualization in Figure 2, we notice that starting from an
initial color, the cubes tend to keep their colors. That is, the blue
ones tend to become darker in blue and the red ones tend to grow
darker in red. They seldom change from blue to red or vice versa.
This reflects that a neural network follows certain searching path
during the training process. When looking at the elevation along
z-axis, we observed the same trend. From initial positions, blue
cubes are lower than red cubes in the z-direction. Then the blue
cubes keep falling lower and red cubes keep rising higher during
training. To better understand this evolution, we visualized the
trajectories of weight values over time.

Our second qualitative visualization is based on the above ob-
servations. Figure 3 presents trajectories of 4 neural networks with
different learning rates. To display these trajectories, we take the
first 2 weight values from one filter as if they are x,y coordinates.
Use these x,y coordinates we can draw points in a 2D plane. The
color of points indicates time steps (from blue to red). We annotate
learning rates beside the corresponding trajectories. The right most

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

Ir-0.001

step
-2.199e+03

1649.2

1099.5

549.75
“0.000e+00

X. Chen et al.

Ir=0.0001

Figure 3: Visualization of 4 trajectories using the first 2 dimensions of convolution weights. Color represents time steps, starts
from 0 as blue to 2199 as red. Each trajectory corresponds to one neural network with different learning rates.

trajectory reflects a network with the largest learning rate(learning
rate=0.005). It goes longer distance than the other three trajectories
with smaller learning rates. These trajectories suggest that within
a short period of training, neural networks are searching along
some determined directions. But after that, neural networks start
to behave like random walks. In our example, all 4 neural networks
with different learning rates start to behave like random walks after
about 100 steps of training. The above observations are similar to
a recent work by Eliana Lorch [11] using PCA to reduce the high
dimensional weight vectors to 2 or 3 dimensions for visualization
purposes and get training trajectories. We visualized several pairs
of weights from the convolutional filters, they all show similar pat-
terns so we only plot the trajectories of the first two weight values
here.

5.3 Visualizing L2-norms

The equations of adjusting weights [10] in back-propagation train-
ing , also support our observation that the searching path follows a
random walk model. In this equation, W(t) is the weight at time step
t. n is the learning rate and g—‘f, is the back-propagated gradient.

OE

U 1)

To see how the trajectories related with random walks, we con-
catenate weights in each layer into long weight vectors and subtract
their initial values. Then we compute their L2-norms for each time
step to see the distance between the end point of weight vectors
and their start positions. Similarly we computed the L2-norms for
bias vectors and gradient vectors for each layer. The distances are
shown in Figure 4 (a) and (b). In the first row, we visualized the
L2-norms of weight vectors in the two convolutional layers and
two fully connected layers(from left to right). In the second row, we
visualized the L2-norms of bias vectors of the above four layers. The
third row corresponds with the L2-norms of gradients to update
the weight vectors in the four layers. The fourth rows corresponds
to the L2-norms of gradients to update the bias vectors in the four
layers.

W(t) = W(t-1) -

In Figure 4 we compared two neural networks with different
learning rates. The graph(a) displays a neural network with a
smaller learning rate. The L2-norms of weight vectors and bias
vectors grow during training. They display curves that are similar
to square root curves. On the other hand, the gradient vectors look
more like random signals. The graph(b) display a neural network
with a bigger learning rate. In this case the L2-norms of weight
vectors and bias vectors saturated in a short period. We can see the
gradient vectors vanish quickly. The visualization of trajectories
and L2-norms can be used as a qualitative indicator of training
status.

5.4 Visualizing Activations

The previous three experiments provide qualitative visualizations
about the models. They are useful to show how learning rates affect
training. In this section, we also visualize the activation of filters in
convolutional layers as a quantitative indicator to show how other
hyper-parameters, such as the number of filters, affect training.

Although activations are actually 2D feature maps, we do dif-
ferently from previous methods that display activations as images.
We flatten the 2D feature maps instead. In our example, they are
flattened to 1D vector with 784 elements. Each element corresponds
to one pixel in the feature map. Because the ReLU activation func-
tion (relu = max(x,0)) outputs non-negative values, we simply
sum all element-wise activation values and normalize them to [0,1].
We can use the normalized activations to compare the similarities
between filters because later we will merge them together instead
of throwing away any of them. Then we plot those 1D normalized
activation vectors to compare the accumulated activation values af-
ter the neural networks have learned all training sample images for
each epoch. The accumulated activation values are simple to com-
pute and they do well to indicate similarities between convolutional
filters.

Fig.5 shows activations in both convolutional layer; (16 filters)
and layery (32 filters). Filters are numbered from 0 to 15 for the first
convolutional layer and 0 to 31 for the second convolutional layer.
They are labeled from top left to bottom right. Our visualization is

TensorView: Visualizing the Training of CNN Using Paraview

conv layerl conv layer2 fully connectl fully connect2

10 2 0.15 015
0.10 lo.10 weights
0s 1
l0.05 lo.0s
00 0 lo.00 Jo.00
B 2 0.10 lo.0a
10 biases
l0.02
5 1 l0.05
o 0 lo.00 lo.00
15
3 15
10 gradients
2 10 -
o of weights
1 05 os
o 0 00 00
04
) 02 gradients
02 01 of biases
T — 00— oo,

(a) Training goes slowly with learning rate 1 = 0.0001. The weight
vector and bias vector curves look like square root with regards to
time steps. The gradient vector curves look like random signals.

ok N w

conv layerl conv layer2 fully connectl fully connect2
075 03
04
0.50 N
- 02 weights
5 02
025 01
10 1 0 10 1 0 10 1 0 01
° 4 03
50
4 5 02 biases
25 2 01
5 10 15 5 10 15 510 15, 5 10 15
10
20 10 gradients
5 10 of weights
0 0 0 0
01 01 0 1 0 1
20
5 1 0.5 gratflents
10 \ of biases
0 0 0 00 m
5 10 15 o 5 10 15 o 5 10 15 o 5 10 15

(b) With learning rate = 0.01, The weight vector and bias vector
curves saturated shortly after training. The gradient vector curves
show they vanish quickly. Although there are some gradient signals
in the last fully connected layer, the gradient signal at the first con-
volutional layer drops to zero. Thus the learning stops.

Figure 4: Rows 1 to 4(from top to bottom): L2-norms of
weight vectors and bias vectors; L2-norms of gradient vec-
tors. Columns 1 to 4(from left to right): convolutional layer
1 and 2; fully connected layer 1 and 2. x-axis represents time
steps. y-axis represents distance values.

able to capture redundancy within the layers. The plot(a) of Fig.5
shows that convolutional filters 0, 3, 7 and 11 in layer; have a
similar behavior. The heatmap(b) corroborates their correlation
with a high Pearsons’ correlation coefficient between convolutional
filters 0, 3, 7 and 11 (in darker red color). The plot(c) shows that
filters 23 and 25 in layer; are similar. So does the heatmap(d). By
being able to visualize and identify redundancy, while at the same
time quantifying their correlation, we are able to better inform the
training process and use this insight to adaptively prune neurons
during the training process. Pruning is shown in the next section.

6 ON-LINE NEURON PRUNING

It has been shown [14] that larger neural networks and networks
that have been carelessly crafted are more likely to overfit. Then,
automatically determining network topology has been a hot topic of

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

0
0

fE§§

o
¥
A Jod
P

2 0.4 06 08 10 00 02 04 06 08 10 00 02 0.4 06 08 10

BuBLuL s

AT IR N09 8 T 654321 0

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 08 08 10 01234 5 6 7 8 9101112131415161718192021 2234252621 9031

Figure 5: (a)(b): Activation and Heatmap of activations’
correlation of layer;. (c)(d) Activation and correlation of
layer;. Color in heatmap represents correlation value. In the
heatmaps, color blue is lower correlation value and red is
higher correlation value.

research in the machine learning community. As a complementary
method of dropout, we propose our first approximation at dealing
with this problem from an on-line pruning perspective. In Figure 5
we saw that a quantitative visualization of activations can give us
information regarding redundant neurons. Intuitively, redundant
neurons are not providing the network with additional discriminant
capabilities and instead slow down the training process. Then, we
perform on-line pruning of such neurons.

We use the pruning of convolutional layers as an example and
give a simple proof by the following equations. Assume x is an input
batch of images. In convolutional layer;, w; and b; are weight
and bias vectors corresponding to convolutional filter; and wy
and by are weight and bias vectors corresponding to convolutional
filtery. o is the ReLU activation function(max(0, x)). In the following
convolutional layers, w] and wj are corresponding to the 1st and
2nd element of convolutional filter] tensor. b] is the bias of this
ﬁlteri. a1 and a, are activations of filter; and filters in the first
convolutional layer. We assume a1 and ay are similar. a] is the
activation of filter] in the second convolutional layer.

a1 = o(wix + by) = az = o(wax + by) (2)
ai = o(wial + wéag + b{) (3)
a; ~ o((w] + wy)ag + b;) (4)

From equation (3), we have the approximate activation of a] in
equation(4). This means that for pruning, we simply add the corre-
sponding elements of the weights tensors in the following layers
and keep one of them in the current layer. Given the computed
Pearson correlation coefficients, we set a similarity threshold of
0.9 to identify pruning candidates. Fig.6 shows pruning of similar
filters in action(Because different random initial weight values, the
shapes of activations look different from Fig.5. The results are from
two individual experiments.). The model starts with 16 filters in
convolutional layer;. At the end of each epoch, we visualize the
activations. We use color to indicate similarities. Take graph(a) as

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

X. Chen et al.

Figure 6: Training is from (a) to (f). Colors indicate similar groups. (a)Three similar groups are found during epoch;. (b)Only f;
is removed after epoch; finished. (c)Filter 1,3, 6,7 are removed at the end of epoch;. (d)Mark f; and fy after epochs. (e)remove
f1 at the end of epochy. (f)after 20 epochs, 16 filters reduced to 10.

an example, there are three pairs of filters that are similar at this
time step. They are (filter, filter) in orange color; (filtery, filter;3)
in blue color and (filters, filterg) in green color. After 20 epochs, we
reduce the filters in convolutional layer; to 10. After 40 epochs, we
reduced the neural network to 10 and 27 filters in the two convo-
lutional layers. The accuracy of the pruned network remains the
same as the original network (99.2%). The number of multiply-add
operations (MAC) reduced from 3.2 million to 2.7 million for the
original already compact neural network.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present TensorView, a visualization tool that
can help the training of deep convolutional neural networks. Ten-
sorView uses Paraview and Matplotlib to visualize and analyze
the training of CNNs. The visualization of weights, trajectories of
weight vectors, L2-norms of weights and biases can provide quali-
tative insight of the effect of learning rate during training process.
The visualization of activations provides quantitative description
of redundancies of convolutional filters. These enable us to prune
redundant neurons during training.

We provide a set of visualizations as a proof of concept based
on the MNIST dataset. We intend to conduct more experiments
with more complex datasets and larger neural networks in the
future. Other hyper-parameters can also be visualized, such as
how initialization affects the performance [12]. We also plan to
fully exploit the in-situ analysis and visualization capabilities of
Paraview, and to build an interactive mechanism to facilitate the
training of more complex networks.

REFERENCES

[1] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
2014. Exploiting linear structure within convolutional networks for efficient

evaluation. In Advances in Neural Information Processing Systems. 1269-1277.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics. 249-256.

[3] IanJ Goodfellow, Oriol Vinyals, and Andrew M Saxe. 2014. Qualitatively charac-
terizing neural network optimization problems. arXiv preprint arXiv:1412.6544
(2014).

[4] Yoshihiko Hamamoto, Shunji Uchimura, Masanori Watanabe, Tetsuya Yasuda,
Yoshihiro Mitani, and Shingo Tomita. 1998. A Gabor filter-based method for
recognizing handwritten numerals. Pattern Recognition 31, 4 (1998), 395-400.

[5] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in Neural Information
Processing Systems. 1135-1143.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

[7] Google Inc. 2015. TensorBoard: Visualizing Learning. https://www.tensorflow.
org/get_started/summaries_and_tensorboard. (2015).

[8] Kitware Inc. and Los Alamos National Laboratory. 2002. Overview Paraview.
https://www.paraview.org/overview/. (2002).

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278-
2324.

[11] Eliana Lorch. 2016. Visualizing Deep Network Training Trajectories with PCA.
In The 33rd International Conference on Machine Learning, JMLR volume 48.

[12] Dmytro Mishkin and Jiri Matas. 2015. All you need is a good init. arXiv preprint
arXiv:1511.06422 (2015).

[13] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. 2014. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 (2014).

[14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 1929-1958.

[15] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579 (2015).

[16] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818-833.

[2

https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://www.paraview.org/overview/

	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Method
	5 Visualization Results
	5.1 Visualizing Weights
	5.2 Visualizing learning trajectories
	5.3 Visualizing L2-norms
	5.4 Visualizing Activations

	6 On-line Neuron Pruning
	7 Conclusions and Future Work
	References

